aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/kernel/time.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/mips/kernel/time.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'arch/mips/kernel/time.c')
-rw-r--r--arch/mips/kernel/time.c755
1 files changed, 755 insertions, 0 deletions
diff --git a/arch/mips/kernel/time.c b/arch/mips/kernel/time.c
new file mode 100644
index 000000000000..648c82292ed6
--- /dev/null
+++ b/arch/mips/kernel/time.c
@@ -0,0 +1,755 @@
+/*
+ * Copyright 2001 MontaVista Software Inc.
+ * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
+ * Copyright (c) 2003, 2004 Maciej W. Rozycki
+ *
+ * Common time service routines for MIPS machines. See
+ * Documentation/mips/time.README.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ */
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/param.h>
+#include <linux/time.h>
+#include <linux/timex.h>
+#include <linux/smp.h>
+#include <linux/kernel_stat.h>
+#include <linux/spinlock.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+
+#include <asm/bootinfo.h>
+#include <asm/compiler.h>
+#include <asm/cpu.h>
+#include <asm/cpu-features.h>
+#include <asm/div64.h>
+#include <asm/sections.h>
+#include <asm/time.h>
+
+/*
+ * The integer part of the number of usecs per jiffy is taken from tick,
+ * but the fractional part is not recorded, so we calculate it using the
+ * initial value of HZ. This aids systems where tick isn't really an
+ * integer (e.g. for HZ = 128).
+ */
+#define USECS_PER_JIFFY TICK_SIZE
+#define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
+
+#define TICK_SIZE (tick_nsec / 1000)
+
+u64 jiffies_64 = INITIAL_JIFFIES;
+
+EXPORT_SYMBOL(jiffies_64);
+
+/*
+ * forward reference
+ */
+extern volatile unsigned long wall_jiffies;
+
+DEFINE_SPINLOCK(rtc_lock);
+
+/*
+ * By default we provide the null RTC ops
+ */
+static unsigned long null_rtc_get_time(void)
+{
+ return mktime(2000, 1, 1, 0, 0, 0);
+}
+
+static int null_rtc_set_time(unsigned long sec)
+{
+ return 0;
+}
+
+unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
+int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
+int (*rtc_set_mmss)(unsigned long);
+
+
+/* usecs per counter cycle, shifted to left by 32 bits */
+static unsigned int sll32_usecs_per_cycle;
+
+/* how many counter cycles in a jiffy */
+static unsigned long cycles_per_jiffy;
+
+/* Cycle counter value at the previous timer interrupt.. */
+static unsigned int timerhi, timerlo;
+
+/* expirelo is the count value for next CPU timer interrupt */
+static unsigned int expirelo;
+
+
+/*
+ * Null timer ack for systems not needing one (e.g. i8254).
+ */
+static void null_timer_ack(void) { /* nothing */ }
+
+/*
+ * Null high precision timer functions for systems lacking one.
+ */
+static unsigned int null_hpt_read(void)
+{
+ return 0;
+}
+
+static void null_hpt_init(unsigned int count) { /* nothing */ }
+
+
+/*
+ * Timer ack for an R4k-compatible timer of a known frequency.
+ */
+static void c0_timer_ack(void)
+{
+ unsigned int count;
+
+ /* Ack this timer interrupt and set the next one. */
+ expirelo += cycles_per_jiffy;
+ write_c0_compare(expirelo);
+
+ /* Check to see if we have missed any timer interrupts. */
+ count = read_c0_count();
+ if ((count - expirelo) < 0x7fffffff) {
+ /* missed_timer_count++; */
+ expirelo = count + cycles_per_jiffy;
+ write_c0_compare(expirelo);
+ }
+}
+
+/*
+ * High precision timer functions for a R4k-compatible timer.
+ */
+static unsigned int c0_hpt_read(void)
+{
+ return read_c0_count();
+}
+
+/* For use solely as a high precision timer. */
+static void c0_hpt_init(unsigned int count)
+{
+ write_c0_count(read_c0_count() - count);
+}
+
+/* For use both as a high precision timer and an interrupt source. */
+static void c0_hpt_timer_init(unsigned int count)
+{
+ count = read_c0_count() - count;
+ expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
+ write_c0_count(expirelo - cycles_per_jiffy);
+ write_c0_compare(expirelo);
+ write_c0_count(count);
+}
+
+int (*mips_timer_state)(void);
+void (*mips_timer_ack)(void);
+unsigned int (*mips_hpt_read)(void);
+void (*mips_hpt_init)(unsigned int);
+
+
+/*
+ * This version of gettimeofday has microsecond resolution and better than
+ * microsecond precision on fast machines with cycle counter.
+ */
+void do_gettimeofday(struct timeval *tv)
+{
+ unsigned long seq;
+ unsigned long lost;
+ unsigned long usec, sec;
+ unsigned long max_ntp_tick = tick_usec - tickadj;
+
+ do {
+ seq = read_seqbegin(&xtime_lock);
+
+ usec = do_gettimeoffset();
+
+ lost = jiffies - wall_jiffies;
+
+ /*
+ * If time_adjust is negative then NTP is slowing the clock
+ * so make sure not to go into next possible interval.
+ * Better to lose some accuracy than have time go backwards..
+ */
+ if (unlikely(time_adjust < 0)) {
+ usec = min(usec, max_ntp_tick);
+
+ if (lost)
+ usec += lost * max_ntp_tick;
+ } else if (unlikely(lost))
+ usec += lost * tick_usec;
+
+ sec = xtime.tv_sec;
+ usec += (xtime.tv_nsec / 1000);
+
+ } while (read_seqretry(&xtime_lock, seq));
+
+ while (usec >= 1000000) {
+ usec -= 1000000;
+ sec++;
+ }
+
+ tv->tv_sec = sec;
+ tv->tv_usec = usec;
+}
+
+EXPORT_SYMBOL(do_gettimeofday);
+
+int do_settimeofday(struct timespec *tv)
+{
+ time_t wtm_sec, sec = tv->tv_sec;
+ long wtm_nsec, nsec = tv->tv_nsec;
+
+ if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
+ return -EINVAL;
+
+ write_seqlock_irq(&xtime_lock);
+
+ /*
+ * This is revolting. We need to set "xtime" correctly. However,
+ * the value in this location is the value at the most recent update
+ * of wall time. Discover what correction gettimeofday() would have
+ * made, and then undo it!
+ */
+ nsec -= do_gettimeoffset() * NSEC_PER_USEC;
+ nsec -= (jiffies - wall_jiffies) * tick_nsec;
+
+ wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
+ wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
+
+ set_normalized_timespec(&xtime, sec, nsec);
+ set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
+
+ time_adjust = 0; /* stop active adjtime() */
+ time_status |= STA_UNSYNC;
+ time_maxerror = NTP_PHASE_LIMIT;
+ time_esterror = NTP_PHASE_LIMIT;
+
+ write_sequnlock_irq(&xtime_lock);
+ clock_was_set();
+ return 0;
+}
+
+EXPORT_SYMBOL(do_settimeofday);
+
+/*
+ * Gettimeoffset routines. These routines returns the time duration
+ * since last timer interrupt in usecs.
+ *
+ * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
+ * Otherwise use calibrate_gettimeoffset()
+ *
+ * If the CPU does not have the counter register, you can either supply
+ * your own gettimeoffset() routine, or use null_gettimeoffset(), which
+ * gives the same resolution as HZ.
+ */
+
+static unsigned long null_gettimeoffset(void)
+{
+ return 0;
+}
+
+
+/* The function pointer to one of the gettimeoffset funcs. */
+unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
+
+
+static unsigned long fixed_rate_gettimeoffset(void)
+{
+ u32 count;
+ unsigned long res;
+
+ /* Get last timer tick in absolute kernel time */
+ count = mips_hpt_read();
+
+ /* .. relative to previous jiffy (32 bits is enough) */
+ count -= timerlo;
+
+ __asm__("multu %1,%2"
+ : "=h" (res)
+ : "r" (count), "r" (sll32_usecs_per_cycle)
+ : "lo", GCC_REG_ACCUM);
+
+ /*
+ * Due to possible jiffies inconsistencies, we need to check
+ * the result so that we'll get a timer that is monotonic.
+ */
+ if (res >= USECS_PER_JIFFY)
+ res = USECS_PER_JIFFY - 1;
+
+ return res;
+}
+
+
+/*
+ * Cached "1/(clocks per usec) * 2^32" value.
+ * It has to be recalculated once each jiffy.
+ */
+static unsigned long cached_quotient;
+
+/* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
+static unsigned long last_jiffies;
+
+/*
+ * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
+ */
+static unsigned long calibrate_div32_gettimeoffset(void)
+{
+ u32 count;
+ unsigned long res, tmp;
+ unsigned long quotient;
+
+ tmp = jiffies;
+
+ quotient = cached_quotient;
+
+ if (last_jiffies != tmp) {
+ last_jiffies = tmp;
+ if (last_jiffies != 0) {
+ unsigned long r0;
+ do_div64_32(r0, timerhi, timerlo, tmp);
+ do_div64_32(quotient, USECS_PER_JIFFY,
+ USECS_PER_JIFFY_FRAC, r0);
+ cached_quotient = quotient;
+ }
+ }
+
+ /* Get last timer tick in absolute kernel time */
+ count = mips_hpt_read();
+
+ /* .. relative to previous jiffy (32 bits is enough) */
+ count -= timerlo;
+
+ __asm__("multu %1,%2"
+ : "=h" (res)
+ : "r" (count), "r" (quotient)
+ : "lo", GCC_REG_ACCUM);
+
+ /*
+ * Due to possible jiffies inconsistencies, we need to check
+ * the result so that we'll get a timer that is monotonic.
+ */
+ if (res >= USECS_PER_JIFFY)
+ res = USECS_PER_JIFFY - 1;
+
+ return res;
+}
+
+static unsigned long calibrate_div64_gettimeoffset(void)
+{
+ u32 count;
+ unsigned long res, tmp;
+ unsigned long quotient;
+
+ tmp = jiffies;
+
+ quotient = cached_quotient;
+
+ if (last_jiffies != tmp) {
+ last_jiffies = tmp;
+ if (last_jiffies) {
+ unsigned long r0;
+ __asm__(".set push\n\t"
+ ".set mips3\n\t"
+ "lwu %0,%3\n\t"
+ "dsll32 %1,%2,0\n\t"
+ "or %1,%1,%0\n\t"
+ "ddivu $0,%1,%4\n\t"
+ "mflo %1\n\t"
+ "dsll32 %0,%5,0\n\t"
+ "or %0,%0,%6\n\t"
+ "ddivu $0,%0,%1\n\t"
+ "mflo %0\n\t"
+ ".set pop"
+ : "=&r" (quotient), "=&r" (r0)
+ : "r" (timerhi), "m" (timerlo),
+ "r" (tmp), "r" (USECS_PER_JIFFY),
+ "r" (USECS_PER_JIFFY_FRAC)
+ : "hi", "lo", GCC_REG_ACCUM);
+ cached_quotient = quotient;
+ }
+ }
+
+ /* Get last timer tick in absolute kernel time */
+ count = mips_hpt_read();
+
+ /* .. relative to previous jiffy (32 bits is enough) */
+ count -= timerlo;
+
+ __asm__("multu %1,%2"
+ : "=h" (res)
+ : "r" (count), "r" (quotient)
+ : "lo", GCC_REG_ACCUM);
+
+ /*
+ * Due to possible jiffies inconsistencies, we need to check
+ * the result so that we'll get a timer that is monotonic.
+ */
+ if (res >= USECS_PER_JIFFY)
+ res = USECS_PER_JIFFY - 1;
+
+ return res;
+}
+
+
+/* last time when xtime and rtc are sync'ed up */
+static long last_rtc_update;
+
+/*
+ * local_timer_interrupt() does profiling and process accounting
+ * on a per-CPU basis.
+ *
+ * In UP mode, it is invoked from the (global) timer_interrupt.
+ *
+ * In SMP mode, it might invoked by per-CPU timer interrupt, or
+ * a broadcasted inter-processor interrupt which itself is triggered
+ * by the global timer interrupt.
+ */
+void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+ if (current->pid)
+ profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(regs));
+}
+
+/*
+ * High-level timer interrupt service routines. This function
+ * is set as irqaction->handler and is invoked through do_IRQ.
+ */
+irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+ unsigned long j;
+ unsigned int count;
+
+ count = mips_hpt_read();
+ mips_timer_ack();
+
+ /* Update timerhi/timerlo for intra-jiffy calibration. */
+ timerhi += count < timerlo; /* Wrap around */
+ timerlo = count;
+
+ /*
+ * call the generic timer interrupt handling
+ */
+ do_timer(regs);
+
+ /*
+ * If we have an externally synchronized Linux clock, then update
+ * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
+ * called as close as possible to 500 ms before the new second starts.
+ */
+ write_seqlock(&xtime_lock);
+ if ((time_status & STA_UNSYNC) == 0 &&
+ xtime.tv_sec > last_rtc_update + 660 &&
+ (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
+ (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
+ if (rtc_set_mmss(xtime.tv_sec) == 0) {
+ last_rtc_update = xtime.tv_sec;
+ } else {
+ /* do it again in 60 s */
+ last_rtc_update = xtime.tv_sec - 600;
+ }
+ }
+ write_sequnlock(&xtime_lock);
+
+ /*
+ * If jiffies has overflown in this timer_interrupt, we must
+ * update the timer[hi]/[lo] to make fast gettimeoffset funcs
+ * quotient calc still valid. -arca
+ *
+ * The first timer interrupt comes late as interrupts are
+ * enabled long after timers are initialized. Therefore the
+ * high precision timer is fast, leading to wrong gettimeoffset()
+ * calculations. We deal with it by setting it based on the
+ * number of its ticks between the second and the third interrupt.
+ * That is still somewhat imprecise, but it's a good estimate.
+ * --macro
+ */
+ j = jiffies;
+ if (j < 4) {
+ static unsigned int prev_count;
+ static int hpt_initialized;
+
+ switch (j) {
+ case 0:
+ timerhi = timerlo = 0;
+ mips_hpt_init(count);
+ break;
+ case 2:
+ prev_count = count;
+ break;
+ case 3:
+ if (!hpt_initialized) {
+ unsigned int c3 = 3 * (count - prev_count);
+
+ timerhi = 0;
+ timerlo = c3;
+ mips_hpt_init(count - c3);
+ hpt_initialized = 1;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+ /*
+ * In UP mode, we call local_timer_interrupt() to do profiling
+ * and process accouting.
+ *
+ * In SMP mode, local_timer_interrupt() is invoked by appropriate
+ * low-level local timer interrupt handler.
+ */
+ local_timer_interrupt(irq, dev_id, regs);
+
+ return IRQ_HANDLED;
+}
+
+asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
+{
+ irq_enter();
+ kstat_this_cpu.irqs[irq]++;
+
+ /* we keep interrupt disabled all the time */
+ timer_interrupt(irq, NULL, regs);
+
+ irq_exit();
+}
+
+asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
+{
+ irq_enter();
+ if (smp_processor_id() != 0)
+ kstat_this_cpu.irqs[irq]++;
+
+ /* we keep interrupt disabled all the time */
+ local_timer_interrupt(irq, NULL, regs);
+
+ irq_exit();
+}
+
+/*
+ * time_init() - it does the following things.
+ *
+ * 1) board_time_init() -
+ * a) (optional) set up RTC routines,
+ * b) (optional) calibrate and set the mips_hpt_frequency
+ * (only needed if you intended to use fixed_rate_gettimeoffset
+ * or use cpu counter as timer interrupt source)
+ * 2) setup xtime based on rtc_get_time().
+ * 3) choose a appropriate gettimeoffset routine.
+ * 4) calculate a couple of cached variables for later usage
+ * 5) board_timer_setup() -
+ * a) (optional) over-write any choices made above by time_init().
+ * b) machine specific code should setup the timer irqaction.
+ * c) enable the timer interrupt
+ */
+
+void (*board_time_init)(void);
+void (*board_timer_setup)(struct irqaction *irq);
+
+unsigned int mips_hpt_frequency;
+
+static struct irqaction timer_irqaction = {
+ .handler = timer_interrupt,
+ .flags = SA_INTERRUPT,
+ .name = "timer",
+};
+
+static unsigned int __init calibrate_hpt(void)
+{
+ u64 frequency;
+ u32 hpt_start, hpt_end, hpt_count, hz;
+
+ const int loops = HZ / 10;
+ int log_2_loops = 0;
+ int i;
+
+ /*
+ * We want to calibrate for 0.1s, but to avoid a 64-bit
+ * division we round the number of loops up to the nearest
+ * power of 2.
+ */
+ while (loops > 1 << log_2_loops)
+ log_2_loops++;
+ i = 1 << log_2_loops;
+
+ /*
+ * Wait for a rising edge of the timer interrupt.
+ */
+ while (mips_timer_state());
+ while (!mips_timer_state());
+
+ /*
+ * Now see how many high precision timer ticks happen
+ * during the calculated number of periods between timer
+ * interrupts.
+ */
+ hpt_start = mips_hpt_read();
+ do {
+ while (mips_timer_state());
+ while (!mips_timer_state());
+ } while (--i);
+ hpt_end = mips_hpt_read();
+
+ hpt_count = hpt_end - hpt_start;
+ hz = HZ;
+ frequency = (u64)hpt_count * (u64)hz;
+
+ return frequency >> log_2_loops;
+}
+
+void __init time_init(void)
+{
+ if (board_time_init)
+ board_time_init();
+
+ if (!rtc_set_mmss)
+ rtc_set_mmss = rtc_set_time;
+
+ xtime.tv_sec = rtc_get_time();
+ xtime.tv_nsec = 0;
+
+ set_normalized_timespec(&wall_to_monotonic,
+ -xtime.tv_sec, -xtime.tv_nsec);
+
+ /* Choose appropriate high precision timer routines. */
+ if (!cpu_has_counter && !mips_hpt_read) {
+ /* No high precision timer -- sorry. */
+ mips_hpt_read = null_hpt_read;
+ mips_hpt_init = null_hpt_init;
+ } else if (!mips_hpt_frequency && !mips_timer_state) {
+ /* A high precision timer of unknown frequency. */
+ if (!mips_hpt_read) {
+ /* No external high precision timer -- use R4k. */
+ mips_hpt_read = c0_hpt_read;
+ mips_hpt_init = c0_hpt_init;
+ }
+
+ if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
+ (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
+ (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
+ /*
+ * We need to calibrate the counter but we don't have
+ * 64-bit division.
+ */
+ do_gettimeoffset = calibrate_div32_gettimeoffset;
+ else
+ /*
+ * We need to calibrate the counter but we *do* have
+ * 64-bit division.
+ */
+ do_gettimeoffset = calibrate_div64_gettimeoffset;
+ } else {
+ /* We know counter frequency. Or we can get it. */
+ if (!mips_hpt_read) {
+ /* No external high precision timer -- use R4k. */
+ mips_hpt_read = c0_hpt_read;
+
+ if (mips_timer_state)
+ mips_hpt_init = c0_hpt_init;
+ else {
+ /* No external timer interrupt -- use R4k. */
+ mips_hpt_init = c0_hpt_timer_init;
+ mips_timer_ack = c0_timer_ack;
+ }
+ }
+ if (!mips_hpt_frequency)
+ mips_hpt_frequency = calibrate_hpt();
+
+ do_gettimeoffset = fixed_rate_gettimeoffset;
+
+ /* Calculate cache parameters. */
+ cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
+
+ /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
+ do_div64_32(sll32_usecs_per_cycle,
+ 1000000, mips_hpt_frequency / 2,
+ mips_hpt_frequency);
+
+ /* Report the high precision timer rate for a reference. */
+ printk("Using %u.%03u MHz high precision timer.\n",
+ ((mips_hpt_frequency + 500) / 1000) / 1000,
+ ((mips_hpt_frequency + 500) / 1000) % 1000);
+ }
+
+ if (!mips_timer_ack)
+ /* No timer interrupt ack (e.g. i8254). */
+ mips_timer_ack = null_timer_ack;
+
+ /* This sets up the high precision timer for the first interrupt. */
+ mips_hpt_init(mips_hpt_read());
+
+ /*
+ * Call board specific timer interrupt setup.
+ *
+ * this pointer must be setup in machine setup routine.
+ *
+ * Even if a machine chooses to use a low-level timer interrupt,
+ * it still needs to setup the timer_irqaction.
+ * In that case, it might be better to set timer_irqaction.handler
+ * to be NULL function so that we are sure the high-level code
+ * is not invoked accidentally.
+ */
+ board_timer_setup(&timer_irqaction);
+}
+
+#define FEBRUARY 2
+#define STARTOFTIME 1970
+#define SECDAY 86400L
+#define SECYR (SECDAY * 365)
+#define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
+#define days_in_year(y) (leapyear(y) ? 366 : 365)
+#define days_in_month(m) (month_days[(m) - 1])
+
+static int month_days[12] = {
+ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+void to_tm(unsigned long tim, struct rtc_time *tm)
+{
+ long hms, day, gday;
+ int i;
+
+ gday = day = tim / SECDAY;
+ hms = tim % SECDAY;
+
+ /* Hours, minutes, seconds are easy */
+ tm->tm_hour = hms / 3600;
+ tm->tm_min = (hms % 3600) / 60;
+ tm->tm_sec = (hms % 3600) % 60;
+
+ /* Number of years in days */
+ for (i = STARTOFTIME; day >= days_in_year(i); i++)
+ day -= days_in_year(i);
+ tm->tm_year = i;
+
+ /* Number of months in days left */
+ if (leapyear(tm->tm_year))
+ days_in_month(FEBRUARY) = 29;
+ for (i = 1; day >= days_in_month(i); i++)
+ day -= days_in_month(i);
+ days_in_month(FEBRUARY) = 28;
+ tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
+
+ /* Days are what is left over (+1) from all that. */
+ tm->tm_mday = day + 1;
+
+ /*
+ * Determine the day of week
+ */
+ tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
+}
+
+EXPORT_SYMBOL(rtc_lock);
+EXPORT_SYMBOL(to_tm);
+EXPORT_SYMBOL(rtc_set_time);
+EXPORT_SYMBOL(rtc_get_time);
+
+unsigned long long sched_clock(void)
+{
+ return (unsigned long long)jiffies*(1000000000/HZ);
+}

Privacy Policy