path: root/Documentation/powerpc/pmu-ebb.txt
diff options
authorMichael Ellerman <michael@ellerman.id.au>2013-06-28 18:15:16 +1000
committerBenjamin Herrenschmidt <benh@kernel.crashing.org>2013-07-01 11:50:10 +1000
commit330a1eb7775ba876dbd46b9885556e57f705e3d4 (patch)
tree138693772ff043ec23e335a1ef42df7a7d5707ba /Documentation/powerpc/pmu-ebb.txt
parent2ac138ca21ad26c988ce7c91d27327f85beb7519 (diff)
powerpc/perf: Core EBB support for 64-bit book3s
Add support for EBB (Event Based Branches) on 64-bit book3s. See the included documentation for more details. EBBs are a feature which allows the hardware to branch directly to a specified user space address when a PMU event overflows. This can be used by programs for self-monitoring with no kernel involvement in the inner loop. Most of the logic is in the generic book3s code, primarily to avoid a proliferation of PMU callbacks. Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Diffstat (limited to 'Documentation/powerpc/pmu-ebb.txt')
1 files changed, 137 insertions, 0 deletions
diff --git a/Documentation/powerpc/pmu-ebb.txt b/Documentation/powerpc/pmu-ebb.txt
new file mode 100644
index 000000000000..73cd163dbfb8
--- /dev/null
+++ b/Documentation/powerpc/pmu-ebb.txt
@@ -0,0 +1,137 @@
+PMU Event Based Branches
+Event Based Branches (EBBs) are a feature which allows the hardware to
+branch directly to a specified user space address when certain events occur.
+The full specification is available in Power ISA v2.07:
+ https://www.power.org/documentation/power-isa-version-2-07/
+One type of event for which EBBs can be configured is PMU exceptions. This
+document describes the API for configuring the Power PMU to generate EBBs,
+using the Linux perf_events API.
+Throughout this document we will refer to an "EBB event" or "EBB events". This
+just refers to a struct perf_event which has set the "EBB" flag in its
+attr.config. All events which can be configured on the hardware PMU are
+possible "EBB events".
+When a PMU EBB occurs it is delivered to the currently running process. As such
+EBBs can only sensibly be used by programs for self-monitoring.
+It is a feature of the perf_events API that events can be created on other
+processes, subject to standard permission checks. This is also true of EBB
+events, however unless the target process enables EBBs (via mtspr(BESCR)) no
+EBBs will ever be delivered.
+This makes it possible for a process to enable EBBs for itself, but not
+actually configure any events. At a later time another process can come along
+and attach an EBB event to the process, which will then cause EBBs to be
+delivered to the first process. It's not clear if this is actually useful.
+When the PMU is configured for EBBs, all PMU interrupts are delivered to the
+user process. This means once an EBB event is scheduled on the PMU, no non-EBB
+events can be configured. This means that EBB events can not be run
+concurrently with regular 'perf' commands, or any other perf events.
+It is however safe to run 'perf' commands on a process which is using EBBs. The
+kernel will in general schedule the EBB event, and perf will be notified that
+its events could not run.
+The exclusion between EBB events and regular events is implemented using the
+existing "pinned" and "exclusive" attributes of perf_events. This means EBB
+events will be given priority over other events, unless they are also pinned.
+If an EBB event and a regular event are both pinned, then whichever is enabled
+first will be scheduled and the other will be put in error state. See the
+section below titled "Enabling an EBB event" for more information.
+Creating an EBB event
+To request that an event is counted using EBB, the event code should have bit
+63 set.
+EBB events must be created with a particular, and restrictive, set of
+attributes - this is so that they interoperate correctly with the rest of the
+perf_events subsystem.
+An EBB event must be created with the "pinned" and "exclusive" attributes set.
+Note that if you are creating a group of EBB events, only the leader can have
+these attributes set.
+An EBB event must NOT set any of the "inherit", "sample_period", "freq" or
+"enable_on_exec" attributes.
+An EBB event must be attached to a task. This is specified to perf_event_open()
+by passing a pid value, typically 0 indicating the current task.
+All events in a group must agree on whether they want EBB. That is all events
+must request EBB, or none may request EBB.
+EBB events must specify the PMC they are to be counted on. This ensures
+userspace is able to reliably determine which PMC the event is scheduled on.
+Enabling an EBB event
+Once an EBB event has been successfully opened, it must be enabled with the
+perf_events API. This can be achieved either via the ioctl() interface, or the
+prctl() interface.
+However, due to the design of the perf_events API, enabling an event does not
+guarantee that it has been scheduled on the PMU. To ensure that the EBB event
+has been scheduled on the PMU, you must perform a read() on the event. If the
+read() returns EOF, then the event has not been scheduled and EBBs are not
+This behaviour occurs because the EBB event is pinned and exclusive. When the
+EBB event is enabled it will force all other non-pinned events off the PMU. In
+this case the enable will be successful. However if there is already an event
+pinned on the PMU then the enable will not be successful.
+Reading an EBB event
+It is possible to read() from an EBB event. However the results are
+meaningless. Because interrupts are being delivered to the user process the
+kernel is not able to count the event, and so will return a junk value.
+Closing an EBB event
+When an EBB event is finished with, you can close it using close() as for any
+regular event. If this is the last EBB event the PMU will be deconfigured and
+no further PMU EBBs will be delivered.
+EBB Handler
+The EBB handler is just regular userspace code, however it must be written in
+the style of an interrupt handler. When the handler is entered all registers
+are live (possibly) and so must be saved somehow before the handler can invoke
+other code.
+It's up to the program how to handle this. For C programs a relatively simple
+option is to create an interrupt frame on the stack and save registers there.
+EBB events are not inherited across fork. If the child process wishes to use
+EBBs it should open a new event for itself. Similarly the EBB state in
+BESCR/EBBHR/EBBRR is cleared across fork().

Privacy Policy