aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/staging/sep/sep_driver.c
blob: d841289c1fafd9caaa0330ac41e2b532c55f3405 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
/*
 *
 *  sep_driver.c - Security Processor Driver main group of functions
 *
 *  Copyright(c) 2009,2010 Intel Corporation. All rights reserved.
 *  Contributions(c) 2009,2010 Discretix. All rights reserved.
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the Free
 *  Software Foundation; version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 *  more details.
 *
 *  You should have received a copy of the GNU General Public License along with
 *  this program; if not, write to the Free Software Foundation, Inc., 59
 *  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 *  CONTACTS:
 *
 *  Mark Allyn		mark.a.allyn@intel.com
 *  Jayant Mangalampalli jayant.mangalampalli@intel.com
 *
 *  CHANGES:
 *
 *  2009.06.26	Initial publish
 *  2010.09.14  Upgrade to Medfield
 *
 */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/kdev_t.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/poll.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/ioctl.h>
#include <asm/current.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <asm/cacheflush.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/rar_register.h>

#include "../memrar/memrar.h"

#include "sep_driver_hw_defs.h"
#include "sep_driver_config.h"
#include "sep_driver_api.h"
#include "sep_dev.h"

/*----------------------------------------
	DEFINES
-----------------------------------------*/

#define SEP_RAR_IO_MEM_REGION_SIZE 0x40000

/*--------------------------------------------
	GLOBAL variables
--------------------------------------------*/

/* Keep this a single static object for now to keep the conversion easy */

static struct sep_device *sep_dev;

/**
 *	sep_load_firmware - copy firmware cache/resident
 *	@sep: pointer to struct sep_device we are loading
 *
 *	This functions copies the cache and resident from their source
 *	location into destination shared memory.
 */
static int sep_load_firmware(struct sep_device *sep)
{
	const struct firmware *fw;
	char *cache_name = "cache.image.bin";
	char *res_name = "resident.image.bin";
	char *extapp_name = "extapp.image.bin";
	int error ;
	unsigned long work1, work2, work3;

	/* Set addresses and load resident */
	sep->resident_bus = sep->rar_bus;
	sep->resident_addr = sep->rar_addr;

	error = request_firmware(&fw, res_name, &sep->pdev->dev);
	if (error) {
		dev_warn(&sep->pdev->dev, "can't request resident fw\n");
		return error;
	}

	memcpy(sep->resident_addr, (void *)fw->data, fw->size);
	sep->resident_size = fw->size;
	release_firmware(fw);

	dev_dbg(&sep->pdev->dev, "resident bus is %lx\n",
		(unsigned long)sep->resident_bus);

	/* Set addresses for dcache (no loading needed) */
	work1 = (unsigned long)sep->resident_bus;
	work2 = (unsigned long)sep->resident_size;
	work3 = (work1 + work2 + (1024 * 4)) & 0xfffff000;
	sep->dcache_bus = (dma_addr_t)work3;

	work1 = (unsigned long)sep->resident_addr;
	work2 = (unsigned long)sep->resident_size;
	work3 = (work1 + work2 + (1024 * 4)) & 0xfffff000;
	sep->dcache_addr = (void *)work3;

	sep->dcache_size = 1024 * 128;

	/* Set addresses and load cache */
	sep->cache_bus = sep->dcache_bus + sep->dcache_size;
	sep->cache_addr = sep->dcache_addr + sep->dcache_size;

	error = request_firmware(&fw, cache_name, &sep->pdev->dev);
	if (error) {
		dev_warn(&sep->pdev->dev, "Unable to request cache firmware\n");
		return error;
	}

	memcpy(sep->cache_addr, (void *)fw->data, fw->size);
	sep->cache_size = fw->size;
	release_firmware(fw);

	dev_dbg(&sep->pdev->dev, "cache bus is %08lx\n",
		(unsigned long)sep->cache_bus);

	/* Set addresses and load extapp */
	sep->extapp_bus = sep->cache_bus + (1024 * 370);
	sep->extapp_addr = sep->cache_addr + (1024 * 370);

	error = request_firmware(&fw, extapp_name, &sep->pdev->dev);
	if (error) {
		dev_warn(&sep->pdev->dev, "Unable to request extapp firmware\n");
		return error;
	}

	memcpy(sep->extapp_addr, (void *)fw->data, fw->size);
	sep->extapp_size = fw->size;
	release_firmware(fw);

	dev_dbg(&sep->pdev->dev, "extapp bus is %08llx\n",
		(unsigned long long)sep->extapp_bus);

	return error;
}

MODULE_FIRMWARE("sep/cache.image.bin");
MODULE_FIRMWARE("sep/resident.image.bin");
MODULE_FIRMWARE("sep/extapp.image.bin");

/**
 *	sep_dump_message - dump the message that is pending
 *	@sep: SEP device
 */
static void sep_dump_message(struct sep_device *sep)
{
	int count;
	u32 *p = sep->shared_addr;
	for (count = 0; count < 12 * 4; count += 4)
		dev_dbg(&sep->pdev->dev, "Word %d of the message is %x\n",
								count, *p++);
}

/**
 *	sep_map_and_alloc_shared_area -	allocate shared block
 *	@sep: security processor
 *	@size: size of shared area
 */
static int sep_map_and_alloc_shared_area(struct sep_device *sep)
{
	sep->shared_addr = dma_alloc_coherent(&sep->pdev->dev,
		sep->shared_size,
		&sep->shared_bus, GFP_KERNEL);

	if (!sep->shared_addr) {
		dev_warn(&sep->pdev->dev,
			"shared memory dma_alloc_coherent failed\n");
		return -ENOMEM;
	}
	dev_dbg(&sep->pdev->dev,
		"shared_addr %zx bytes @%p (bus %llx)\n",
				sep->shared_size, sep->shared_addr,
				(unsigned long long)sep->shared_bus);
	return 0;
}

/**
 *	sep_unmap_and_free_shared_area - free shared block
 *	@sep: security processor
 */
static void sep_unmap_and_free_shared_area(struct sep_device *sep)
{
	dma_free_coherent(&sep->pdev->dev, sep->shared_size,
				sep->shared_addr, sep->shared_bus);
}

/**
 *	sep_shared_bus_to_virt - convert bus/virt addresses
 *	@sep: pointer to struct sep_device
 *	@bus_address: address to convert
 *
 *	Returns virtual address inside the shared area according
 *	to the bus address.
 */
static void *sep_shared_bus_to_virt(struct sep_device *sep,
						dma_addr_t bus_address)
{
	return sep->shared_addr + (bus_address - sep->shared_bus);
}

/**
 *	open function for the singleton driver
 *	@inode_ptr struct inode *
 *	@file_ptr struct file *
 *
 *	Called when the user opens the singleton device interface
 */
static int sep_singleton_open(struct inode *inode_ptr, struct file *file_ptr)
{
	struct sep_device *sep;

	/*
	 * Get the SEP device structure and use it for the
	 * private_data field in filp for other methods
	 */
	sep = sep_dev;

	file_ptr->private_data = sep;

	if (test_and_set_bit(0, &sep->singleton_access_flag))
		return -EBUSY;
	return 0;
}

/**
 *	sep_open - device open method
 *	@inode: inode of SEP device
 *	@filp: file handle to SEP device
 *
 *	Open method for the SEP device. Called when userspace opens
 *	the SEP device node.
 *
 *	Returns zero on success otherwise an error code.
 */
static int sep_open(struct inode *inode, struct file *filp)
{
	struct sep_device *sep;

	/*
	 * Get the SEP device structure and use it for the
	 * private_data field in filp for other methods
	 */
	sep = sep_dev;
	filp->private_data = sep;

	/* Anyone can open; locking takes place at transaction level */
	return 0;
}

/**
 *	sep_singleton_release - close a SEP singleton device
 *	@inode: inode of SEP device
 *	@filp: file handle being closed
 *
 *	Called on the final close of a SEP device. As the open protects against
 *	multiple simultaenous opens that means this method is called when the
 *	final reference to the open handle is dropped.
 */
static int sep_singleton_release(struct inode *inode, struct file *filp)
{
	struct sep_device *sep = filp->private_data;

	clear_bit(0, &sep->singleton_access_flag);
	return 0;
}

/**
 *	sep_request_daemonopen - request daemon open method
 *	@inode: inode of SEP device
 *	@filp: file handle to SEP device
 *
 *	Open method for the SEP request daemon. Called when
 *	request daemon in userspace opens the SEP device node.
 *
 *	Returns zero on success otherwise an error code.
 */
static int sep_request_daemon_open(struct inode *inode, struct file *filp)
{
	struct sep_device *sep = sep_dev;
	int error = 0;

	filp->private_data = sep;

	/* There is supposed to be only one request daemon */
	if (test_and_set_bit(0, &sep->request_daemon_open))
		error = -EBUSY;
	return error;
}

/**
 *	sep_request_daemon_release - close a SEP daemon
 *	@inode: inode of SEP device
 *	@filp: file handle being closed
 *
 *	Called on the final close of a SEP daemon.
 */
static int sep_request_daemon_release(struct inode *inode, struct file *filp)
{
	struct sep_device *sep = filp->private_data;

	dev_dbg(&sep->pdev->dev, "Request daemon release for pid %d\n",
		current->pid);

	/* Clear the request_daemon_open flag */
	clear_bit(0, &sep->request_daemon_open);
	return 0;
}

/**
 *	sep_req_daemon_send_reply_command_handler - poke the SEP
 *	@sep: struct sep_device *
 *
 *	This function raises interrupt to SEPm that signals that is has a
 *	new command from HOST
 */
static int sep_req_daemon_send_reply_command_handler(struct sep_device *sep)
{
	unsigned long lck_flags;

	sep_dump_message(sep);

	/* Counters are lockable region */
	spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
	sep->send_ct++;
	sep->reply_ct++;

	/* Send the interrupt to SEP */
	sep_write_reg(sep, HW_HOST_HOST_SEP_GPR2_REG_ADDR, sep->send_ct);
	sep->send_ct++;

	spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);

	dev_dbg(&sep->pdev->dev,
		"sep_req_daemon_send_reply send_ct %lx reply_ct %lx\n",
		sep->send_ct, sep->reply_ct);

	return 0;
}


/**
 *	sep_free_dma_table_data_handler - free DMA table
 *	@sep: pointere to struct sep_device
 *
 *	Handles the request to  free DMA table for synchronic actions
 */
static int sep_free_dma_table_data_handler(struct sep_device *sep)
{
	int count;
	int dcb_counter;
	/* Pointer to the current dma_resource struct */
	struct sep_dma_resource *dma;

	for (dcb_counter = 0; dcb_counter < sep->nr_dcb_creat; dcb_counter++) {
		dma = &sep->dma_res_arr[dcb_counter];

		/* Unmap and free input map array */
		if (dma->in_map_array) {
			for (count = 0; count < dma->in_num_pages; count++) {
				dma_unmap_page(&sep->pdev->dev,
					dma->in_map_array[count].dma_addr,
					dma->in_map_array[count].size,
					DMA_TO_DEVICE);
			}
			kfree(dma->in_map_array);
		}

		/* Unmap output map array, DON'T free it yet */
		if (dma->out_map_array) {
			for (count = 0; count < dma->out_num_pages; count++) {
				dma_unmap_page(&sep->pdev->dev,
					dma->out_map_array[count].dma_addr,
					dma->out_map_array[count].size,
					DMA_FROM_DEVICE);
			}
			kfree(dma->out_map_array);
		}

		/* Free page cache for output */
		if (dma->in_page_array) {
			for (count = 0; count < dma->in_num_pages; count++) {
				flush_dcache_page(dma->in_page_array[count]);
				page_cache_release(dma->in_page_array[count]);
			}
			kfree(dma->in_page_array);
		}

		if (dma->out_page_array) {
			for (count = 0; count < dma->out_num_pages; count++) {
				if (!PageReserved(dma->out_page_array[count]))
					SetPageDirty(dma->out_page_array[count]);
				flush_dcache_page(dma->out_page_array[count]);
				page_cache_release(dma->out_page_array[count]);
			}
			kfree(dma->out_page_array);
		}

		/* Reset all the values */
		dma->in_page_array = NULL;
		dma->out_page_array = NULL;
		dma->in_num_pages = 0;
		dma->out_num_pages = 0;
		dma->in_map_array = NULL;
		dma->out_map_array = NULL;
		dma->in_map_num_entries = 0;
		dma->out_map_num_entries = 0;
	}

	sep->nr_dcb_creat = 0;
	sep->num_lli_tables_created = 0;

	return 0;
}

/**
 *	sep_request_daemon_mmap - maps the shared area to user space
 *	@filp: pointer to struct file
 *	@vma: pointer to vm_area_struct
 *
 *	Called by the kernel when the daemon attempts an mmap() syscall
 *	using our handle.
 */
static int sep_request_daemon_mmap(struct file  *filp,
	struct vm_area_struct  *vma)
{
	struct sep_device *sep = filp->private_data;
	dma_addr_t bus_address;
	int error = 0;

	if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) {
		error = -EINVAL;
		goto end_function;
	}

	/* Get physical address */
	bus_address = sep->shared_bus;

	if (remap_pfn_range(vma, vma->vm_start, bus_address >> PAGE_SHIFT,
		vma->vm_end - vma->vm_start, vma->vm_page_prot)) {

		dev_warn(&sep->pdev->dev, "remap_page_range failed\n");
		error = -EAGAIN;
		goto end_function;
	}

end_function:
	return error;
}

/**
 *	sep_request_daemon_poll - poll implementation
 *	@sep: struct sep_device * for current SEP device
 *	@filp: struct file * for open file
 *	@wait: poll_table * for poll
 *
 *	Called when our device is part of a poll() or select() syscall
 */
static unsigned int sep_request_daemon_poll(struct file *filp,
	poll_table  *wait)
{
	u32	mask = 0;
	/* GPR2 register */
	u32	retval2;
	unsigned long lck_flags;
	struct sep_device *sep = filp->private_data;

	poll_wait(filp, &sep->event_request_daemon, wait);

	dev_dbg(&sep->pdev->dev, "daemon poll: send_ct is %lx reply ct is %lx\n",
						sep->send_ct, sep->reply_ct);

	spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
	/* Check if the data is ready */
	if (sep->send_ct == sep->reply_ct) {
		spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);

		retval2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
		dev_dbg(&sep->pdev->dev,
			"daemon poll: data check (GPR2) is %x\n", retval2);

		/* Check if PRINT request */
		if ((retval2 >> 30) & 0x1) {
			dev_dbg(&sep->pdev->dev, "daemon poll: PRINTF request in\n");
			mask |= POLLIN;
			goto end_function;
		}
		/* Check if NVS request */
		if (retval2 >> 31) {
			dev_dbg(&sep->pdev->dev, "daemon poll: NVS request in\n");
			mask |= POLLPRI | POLLWRNORM;
		}
	} else {
		spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
		dev_dbg(&sep->pdev->dev,
			"daemon poll: no reply received; returning 0\n");
		mask = 0;
	}
end_function:
	return mask;
}

/**
 *	sep_release - close a SEP device
 *	@inode: inode of SEP device
 *	@filp: file handle being closed
 *
 *	Called on the final close of a SEP device.
 */
static int sep_release(struct inode *inode, struct file *filp)
{
	struct sep_device *sep = filp->private_data;

	dev_dbg(&sep->pdev->dev, "Release for pid %d\n", current->pid);

	mutex_lock(&sep->sep_mutex);
	/* Is this the process that has a transaction open?
	 * If so, lets reset pid_doing_transaction to 0 and
	 * clear the in use flags, and then wake up sep_event
	 * so that other processes can do transactions
	 */
	if (sep->pid_doing_transaction == current->pid) {
		clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags);
		clear_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags);
		sep_free_dma_table_data_handler(sep);
		wake_up(&sep->event);
		sep->pid_doing_transaction = 0;
	}

	mutex_unlock(&sep->sep_mutex);
	return 0;
}

/**
 *	sep_mmap -  maps the shared area to user space
 *	@filp: pointer to struct file
 *	@vma: pointer to vm_area_struct
 *
 *	Called on an mmap of our space via the normal SEP device
 */
static int sep_mmap(struct file *filp, struct vm_area_struct *vma)
{
	dma_addr_t bus_addr;
	struct sep_device *sep = filp->private_data;
	unsigned long error = 0;

	/* Set the transaction busy (own the device) */
	wait_event_interruptible(sep->event,
		test_and_set_bit(SEP_MMAP_LOCK_BIT,
		&sep->in_use_flags) == 0);

	if (signal_pending(current)) {
		error = -EINTR;
		goto end_function_with_error;
	}
	/*
	 * The pid_doing_transaction indicates that this process
	 * now owns the facilities to performa a transaction with
	 * the SEP. While this process is performing a transaction,
	 * no other process who has the SEP device open can perform
	 * any transactions. This method allows more than one process
	 * to have the device open at any given time, which provides
	 * finer granularity for device utilization by multiple
	 * processes.
	 */
	mutex_lock(&sep->sep_mutex);
	sep->pid_doing_transaction = current->pid;
	mutex_unlock(&sep->sep_mutex);

	/* Zero the pools and the number of data pool alocation pointers */
	sep->data_pool_bytes_allocated = 0;
	sep->num_of_data_allocations = 0;

	/*
	 * Check that the size of the mapped range is as the size of the message
	 * shared area
	 */
	if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) {
		error = -EINVAL;
		goto end_function_with_error;
	}

	dev_dbg(&sep->pdev->dev, "shared_addr is %p\n", sep->shared_addr);

	/* Get bus address */
	bus_addr = sep->shared_bus;

	if (remap_pfn_range(vma, vma->vm_start, bus_addr >> PAGE_SHIFT,
		vma->vm_end - vma->vm_start, vma->vm_page_prot)) {
		dev_warn(&sep->pdev->dev, "remap_page_range failed\n");
		error = -EAGAIN;
		goto end_function_with_error;
	}
	goto end_function;

end_function_with_error:
	/* Clear the bit */
	clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags);
	mutex_lock(&sep->sep_mutex);
	sep->pid_doing_transaction = 0;
	mutex_unlock(&sep->sep_mutex);

	/* Raise event for stuck contextes */

	wake_up(&sep->event);

end_function:
	return error;
}

/**
 *	sep_poll - poll handler
 *	@filp: pointer to struct file
 *	@wait: pointer to poll_table
 *
 *	Called by the OS when the kernel is asked to do a poll on
 *	a SEP file handle.
 */
static unsigned int sep_poll(struct file *filp, poll_table *wait)
{
	u32 mask = 0;
	u32 retval = 0;
	u32 retval2 = 0;
	unsigned long lck_flags;

	struct sep_device *sep = filp->private_data;

	/* Am I the process that owns the transaction? */
	mutex_lock(&sep->sep_mutex);
	if (current->pid != sep->pid_doing_transaction) {
		dev_dbg(&sep->pdev->dev, "poll; wrong pid\n");
		mask = POLLERR;
		mutex_unlock(&sep->sep_mutex);
		goto end_function;
	}
	mutex_unlock(&sep->sep_mutex);

	/* Check if send command or send_reply were activated previously */
	if (!test_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags)) {
		mask = POLLERR;
		goto end_function;
	}

	/* Add the event to the polling wait table */
	dev_dbg(&sep->pdev->dev, "poll: calling wait sep_event\n");

	poll_wait(filp, &sep->event, wait);

	dev_dbg(&sep->pdev->dev, "poll: send_ct is %lx reply ct is %lx\n",
		sep->send_ct, sep->reply_ct);

	/* Check if error occured during poll */
	retval2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
	if (retval2 != 0x0) {
		dev_warn(&sep->pdev->dev, "poll; poll error %x\n", retval2);
		mask |= POLLERR;
		goto end_function;
	}

	spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);

	if (sep->send_ct == sep->reply_ct) {
		spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
		retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
		dev_dbg(&sep->pdev->dev, "poll: data ready check (GPR2)  %x\n",
			retval);

		/* Check if printf request  */
		if ((retval >> 30) & 0x1) {
			dev_dbg(&sep->pdev->dev, "poll: SEP printf request\n");
			wake_up(&sep->event_request_daemon);
			goto end_function;
		}

		/* Check if the this is SEP reply or request */
		if (retval >> 31) {
			dev_dbg(&sep->pdev->dev, "poll: SEP request\n");
			wake_up(&sep->event_request_daemon);
		} else {
			dev_dbg(&sep->pdev->dev, "poll: normal return\n");
			/* In case it is again by send_reply_comand */
			clear_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags);
			sep_dump_message(sep);
			dev_dbg(&sep->pdev->dev,
				"poll; SEP reply POLLIN | POLLRDNORM\n");
			mask |= POLLIN | POLLRDNORM;
		}
	} else {
		spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
		dev_dbg(&sep->pdev->dev,
			"poll; no reply received; returning mask of 0\n");
		mask = 0;
	}

end_function:
	return mask;
}

/**
 *	sep_time_address - address in SEP memory of time
 *	@sep: SEP device we want the address from
 *
 *	Return the address of the two dwords in memory used for time
 *	setting.
 */
static u32 *sep_time_address(struct sep_device *sep)
{
	return sep->shared_addr + SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES;
}

/**
 *	sep_set_time - set the SEP time
 *	@sep: the SEP we are setting the time for
 *
 *	Calculates time and sets it at the predefined address.
 *	Called with the SEP mutex held.
 */
static unsigned long sep_set_time(struct sep_device *sep)
{
	struct timeval time;
	u32 *time_addr;	/* Address of time as seen by the kernel */


	do_gettimeofday(&time);

	/* Set value in the SYSTEM MEMORY offset */
	time_addr = sep_time_address(sep);

	time_addr[0] = SEP_TIME_VAL_TOKEN;
	time_addr[1] = time.tv_sec;

	dev_dbg(&sep->pdev->dev, "time.tv_sec is %lu\n", time.tv_sec);
	dev_dbg(&sep->pdev->dev, "time_addr is %p\n", time_addr);
	dev_dbg(&sep->pdev->dev, "sep->shared_addr is %p\n", sep->shared_addr);

	return time.tv_sec;
}

/**
 *	sep_set_caller_id_handler - insert caller id entry
 *	@sep: SEP device
 *	@arg: pointer to struct caller_id_struct
 *
 *	Inserts the data into the caller id table. Note that this function
 *	falls under the ioctl lock
 */
static int sep_set_caller_id_handler(struct sep_device *sep, unsigned long arg)
{
	void __user *hash;
	int   error = 0;
	int   i;
	struct caller_id_struct command_args;

	for (i = 0; i < SEP_CALLER_ID_TABLE_NUM_ENTRIES; i++) {
		if (sep->caller_id_table[i].pid == 0)
			break;
	}

	if (i == SEP_CALLER_ID_TABLE_NUM_ENTRIES) {
		dev_dbg(&sep->pdev->dev, "no more caller id entries left\n");
		dev_dbg(&sep->pdev->dev, "maximum number is %d\n",
					SEP_CALLER_ID_TABLE_NUM_ENTRIES);
		error = -EUSERS;
		goto end_function;
	}

	/* Copy the data */
	if (copy_from_user(&command_args, (void __user *)arg,
		sizeof(command_args))) {
		error = -EFAULT;
		goto end_function;
	}

	hash = (void __user *)(unsigned long)command_args.callerIdAddress;

	if (!command_args.pid || !command_args.callerIdSizeInBytes) {
		error = -EINVAL;
		goto end_function;
	}

	dev_dbg(&sep->pdev->dev, "pid is %x\n", command_args.pid);
	dev_dbg(&sep->pdev->dev, "callerIdSizeInBytes is %x\n",
		command_args.callerIdSizeInBytes);

	if (command_args.callerIdSizeInBytes >
					SEP_CALLER_ID_HASH_SIZE_IN_BYTES) {
		error = -EMSGSIZE;
		goto end_function;
	}

	sep->caller_id_table[i].pid = command_args.pid;

	if (copy_from_user(sep->caller_id_table[i].callerIdHash,
		hash, command_args.callerIdSizeInBytes))
		error = -EFAULT;
end_function:
	return error;
}

/**
 *	sep_set_current_caller_id - set the caller id
 *	@sep: pointer to struct_sep_device
 *
 *	Set the caller ID (if it exists) to the SEP. Note that this
 *	function falls under the ioctl lock
 */
static int sep_set_current_caller_id(struct sep_device *sep)
{
	int i;
	u32 *hash_buf_ptr;

	/* Zero the previous value */
	memset(sep->shared_addr + SEP_CALLER_ID_OFFSET_BYTES,
					0, SEP_CALLER_ID_HASH_SIZE_IN_BYTES);

	for (i = 0; i < SEP_CALLER_ID_TABLE_NUM_ENTRIES; i++) {
		if (sep->caller_id_table[i].pid == current->pid) {
			dev_dbg(&sep->pdev->dev, "Caller Id found\n");

			memcpy(sep->shared_addr + SEP_CALLER_ID_OFFSET_BYTES,
				(void *)(sep->caller_id_table[i].callerIdHash),
				SEP_CALLER_ID_HASH_SIZE_IN_BYTES);
			break;
		}
	}
	/* Ensure data is in little endian */
	hash_buf_ptr = (u32 *)sep->shared_addr +
		SEP_CALLER_ID_OFFSET_BYTES;

	for (i = 0; i < SEP_CALLER_ID_HASH_SIZE_IN_WORDS; i++)
		hash_buf_ptr[i] = cpu_to_le32(hash_buf_ptr[i]);

	return 0;
}

/**
 *	sep_send_command_handler - kick off a command
 *	@sep: SEP being signalled
 *
 *	This function raises interrupt to SEP that signals that is has a new
 *	command from the host
 *
 *      Note that this function does fall under the ioctl lock
 */
static int sep_send_command_handler(struct sep_device *sep)
{
	unsigned long lck_flags;
	int error = 0;

	if (test_and_set_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags)) {
		error = -EPROTO;
		goto end_function;
	}
	sep_set_time(sep);

	sep_set_current_caller_id(sep);

	sep_dump_message(sep);

	/* Update counter */
	spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
	sep->send_ct++;
	spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);

	dev_dbg(&sep->pdev->dev,
		"sep_send_command_handler send_ct %lx reply_ct %lx\n",
						sep->send_ct, sep->reply_ct);

	/* Send interrupt to SEP */
	sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2);

end_function:
	return error;
}

/**
 *	sep_allocate_data_pool_memory_handler -allocate pool memory
 *	@sep: pointer to struct sep_device
 *	@arg: pointer to struct alloc_struct
 *
 *	This function handles the allocate data pool memory request
 *	This function returns calculates the bus address of the
 *	allocated memory, and the offset of this area from the mapped address.
 *	Therefore, the FVOs in user space can calculate the exact virtual
 *	address of this allocated memory
 */
static int sep_allocate_data_pool_memory_handler(struct sep_device *sep,
	unsigned long arg)
{
	int error = 0;
	struct alloc_struct command_args;

	/* Holds the allocated buffer address in the system memory pool */
	u32 *token_addr;

	if (copy_from_user(&command_args, (void __user *)arg,
					sizeof(struct alloc_struct))) {
		error = -EFAULT;
		goto end_function;
	}

	/* Allocate memory */
	if ((sep->data_pool_bytes_allocated + command_args.num_bytes) >
		SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) {
		error = -ENOMEM;
		goto end_function;
	}

	dev_dbg(&sep->pdev->dev,
		"data pool bytes_allocated: %x\n", (int)sep->data_pool_bytes_allocated);
	dev_dbg(&sep->pdev->dev,
		"offset: %x\n", SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES);
	/* Set the virtual and bus address */
	command_args.offset = SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES +
		sep->data_pool_bytes_allocated;

	/* Place in the shared area that is known by the SEP */
	token_addr = (u32 *)(sep->shared_addr +
		SEP_DRIVER_DATA_POOL_ALLOCATION_OFFSET_IN_BYTES +
		(sep->num_of_data_allocations)*2*sizeof(u32));

	token_addr[0] = SEP_DATA_POOL_POINTERS_VAL_TOKEN;
	token_addr[1] = (u32)sep->shared_bus +
		SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES +
		sep->data_pool_bytes_allocated;

	/* Write the memory back to the user space */
	error = copy_to_user((void *)arg, (void *)&command_args,
		sizeof(struct alloc_struct));
	if (error) {
		error = -EFAULT;
		goto end_function;
	}

	/* Update the allocation */
	sep->data_pool_bytes_allocated += command_args.num_bytes;
	sep->num_of_data_allocations += 1;

end_function:
	return error;
}

/**
 *	sep_lock_kernel_pages - map kernel pages for DMA
 *	@sep: pointer to struct sep_device
 *	@kernel_virt_addr: address of data buffer in kernel
 *	@data_size: size of data
 *	@lli_array_ptr: lli array
 *	@in_out_flag: input into device or output from device
 *
 *	This function locks all the physical pages of the kernel virtual buffer
 *	and construct a basic lli  array, where each entry holds the physical
 *	page address and the size that application data holds in this page
 *	This function is used only during kernel crypto mod calls from within
 *	the kernel (when ioctl is not used)
 */
static int sep_lock_kernel_pages(struct sep_device *sep,
	unsigned long kernel_virt_addr,
	u32 data_size,
	struct sep_lli_entry **lli_array_ptr,
	int in_out_flag)

{
	int error = 0;
	/* Array of lli */
	struct sep_lli_entry *lli_array;
	/* Map array */
	struct sep_dma_map *map_array;

	dev_dbg(&sep->pdev->dev, "lock kernel pages kernel_virt_addr is %08lx\n",
				(unsigned long)kernel_virt_addr);
	dev_dbg(&sep->pdev->dev, "data_size is %x\n", data_size);

	lli_array = kmalloc(sizeof(struct sep_lli_entry), GFP_ATOMIC);
	if (!lli_array) {
		error = -ENOMEM;
		goto end_function;
	}
	map_array = kmalloc(sizeof(struct sep_dma_map), GFP_ATOMIC);
	if (!map_array) {
		error = -ENOMEM;
		goto end_function_with_error;
	}

	map_array[0].dma_addr =
		dma_map_single(&sep->pdev->dev, (void *)kernel_virt_addr,
		data_size, DMA_BIDIRECTIONAL);
	map_array[0].size = data_size;


	/*
	 * Set the start address of the first page - app data may start not at
	 * the beginning of the page
	 */
	lli_array[0].bus_address = (u32)map_array[0].dma_addr;
	lli_array[0].block_size = map_array[0].size;

	dev_dbg(&sep->pdev->dev,
	"lli_array[0].bus_address is %08lx, lli_array[0].block_size is %x\n",
		(unsigned long)lli_array[0].bus_address,
		lli_array[0].block_size);

	/* Set the output parameters */
	if (in_out_flag == SEP_DRIVER_IN_FLAG) {
		*lli_array_ptr = lli_array;
		sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = 1;
		sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL;
		sep->dma_res_arr[sep->nr_dcb_creat].in_map_array = map_array;
		sep->dma_res_arr[sep->nr_dcb_creat].in_map_num_entries = 1;
	} else {
		*lli_array_ptr = lli_array;
		sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages = 1;
		sep->dma_res_arr[sep->nr_dcb_creat].out_page_array = NULL;
		sep->dma_res_arr[sep->nr_dcb_creat].out_map_array = map_array;
		sep->dma_res_arr[sep->nr_dcb_creat].out_map_num_entries = 1;
	}
	goto end_function;

end_function_with_error:
	kfree(lli_array);

end_function:
	return error;
}

/**
 *	sep_lock_user_pages - lock and map user pages for DMA
 *	@sep: pointer to struct sep_device
 *	@app_virt_addr: user memory data buffer
 *	@data_size: size of data buffer
 *	@lli_array_ptr: lli array
 *	@in_out_flag: input or output to device
 *
 *	This function locks all the physical pages of the application
 *	virtual buffer and construct a basic lli  array, where each entry
 *	holds the physical page address and the size that application
 *	data holds in this physical pages
 */
static int sep_lock_user_pages(struct sep_device *sep,
	u32 app_virt_addr,
	u32 data_size,
	struct sep_lli_entry **lli_array_ptr,
	int in_out_flag)

{
	int error = 0;
	u32 count;
	int result;
	/* The the page of the end address of the user space buffer */
	u32 end_page;
	/* The page of the start address of the user space buffer */
	u32 start_page;
	/* The range in pages */
	u32 num_pages;
	/* Array of pointers to page */
	struct page **page_array;
	/* Array of lli */
	struct sep_lli_entry *lli_array;
	/* Map array */
	struct sep_dma_map *map_array;
	/* Direction of the DMA mapping for locked pages */
	enum dma_data_direction	dir;

	/* Set start and end pages  and num pages */
	end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT;
	start_page = app_virt_addr >> PAGE_SHIFT;
	num_pages = end_page - start_page + 1;

	dev_dbg(&sep->pdev->dev, "lock user pages app_virt_addr is %x\n", app_virt_addr);
	dev_dbg(&sep->pdev->dev, "data_size is %x\n", data_size);
	dev_dbg(&sep->pdev->dev, "start_page is %x\n", start_page);
	dev_dbg(&sep->pdev->dev, "end_page is %x\n", end_page);
	dev_dbg(&sep->pdev->dev, "num_pages is %x\n", num_pages);

	/* Allocate array of pages structure pointers */
	page_array = kmalloc(sizeof(struct page *) * num_pages, GFP_ATOMIC);
	if (!page_array) {
		error = -ENOMEM;
		goto end_function;
	}
	map_array = kmalloc(sizeof(struct sep_dma_map) * num_pages, GFP_ATOMIC);
	if (!map_array) {
		dev_warn(&sep->pdev->dev, "kmalloc for map_array failed\n");
		error = -ENOMEM;
		goto end_function_with_error1;
	}

	lli_array = kmalloc(sizeof(struct sep_lli_entry) * num_pages,
		GFP_ATOMIC);

	if (!lli_array) {
		dev_warn(&sep->pdev->dev, "kmalloc for lli_array failed\n");
		error = -ENOMEM;
		goto end_function_with_error2;
	}

	/* Convert the application virtual address into a set of physical */
	down_read(&current->mm->mmap_sem);
	result = get_user_pages(current, current->mm, app_virt_addr,
		num_pages,
		((in_out_flag == SEP_DRIVER_IN_FLAG) ? 0 : 1),
		0, page_array, NULL);

	up_read(&current->mm->mmap_sem);

	/* Check the number of pages locked - if not all then exit with error */
	if (result != num_pages) {
		dev_warn(&sep->pdev->dev,
			"not all pages locked by get_user_pages\n");
		error = -ENOMEM;
		goto end_function_with_error3;
	}

	dev_dbg(&sep->pdev->dev, "get_user_pages succeeded\n");

	/* Set direction */
	if (in_out_flag == SEP_DRIVER_IN_FLAG)
		dir = DMA_TO_DEVICE;
	else
		dir = DMA_FROM_DEVICE;

	/*
	 * Fill the array using page array data and
	 * map the pages - this action will also flush the cache as needed
	 */
	for (count = 0; count < num_pages; count++) {
		/* Fill the map array */
		map_array[count].dma_addr =
			dma_map_page(&sep->pdev->dev, page_array[count],
			0, PAGE_SIZE, /*dir*/DMA_BIDIRECTIONAL);

		map_array[count].size = PAGE_SIZE;

		/* Fill the lli array entry */
		lli_array[count].bus_address = (u32)map_array[count].dma_addr;
		lli_array[count].block_size = PAGE_SIZE;

		dev_warn(&sep->pdev->dev, "lli_array[%x].bus_address is %08lx, lli_array[%x].block_size is %x\n",
			count, (unsigned long)lli_array[count].bus_address,
			count, lli_array[count].block_size);
	}

	/* Check the offset for the first page */
	lli_array[0].bus_address =
		lli_array[0].bus_address + (app_virt_addr & (~PAGE_MASK));

	/* Check that not all the data is in the first page only */
	if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size)
		lli_array[0].block_size = data_size;
	else
		lli_array[0].block_size =
			PAGE_SIZE - (app_virt_addr & (~PAGE_MASK));

	dev_dbg(&sep->pdev->dev,
		"lli_array[0].bus_address is %08lx, lli_array[0].block_size is %x\n",
		(unsigned long)lli_array[count].bus_address,
		lli_array[count].block_size);

	/* Check the size of the last page */
	if (num_pages > 1) {
		lli_array[num_pages - 1].block_size =
			(app_virt_addr + data_size) & (~PAGE_MASK);

		dev_warn(&sep->pdev->dev,
			"lli_array[%x].bus_address is %08lx, lli_array[%x].block_size is %x\n",
			num_pages - 1,
			(unsigned long)lli_array[count].bus_address,
			num_pages - 1,
			lli_array[count].block_size);
	}

	/* Set output params acording to the in_out flag */
	if (in_out_flag == SEP_DRIVER_IN_FLAG) {
		*lli_array_ptr = lli_array;
		sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = num_pages;
		sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = page_array;
		sep->dma_res_arr[sep->nr_dcb_creat].in_map_array = map_array;
		sep->dma_res_arr[sep->nr_dcb_creat].in_map_num_entries =
								num_pages;
	} else {
		*lli_array_ptr = lli_array;
		sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages = num_pages;
		sep->dma_res_arr[sep->nr_dcb_creat].out_page_array =
								page_array;
		sep->dma_res_arr[sep->nr_dcb_creat].out_map_array = map_array;
		sep->dma_res_arr[sep->nr_dcb_creat].out_map_num_entries =
								num_pages;
	}
	goto end_function;

end_function_with_error3:
	/* Free lli array */
	kfree(lli_array);

end_function_with_error2:
	kfree(map_array);

end_function_with_error1:
	/* Free page array */
	kfree(page_array);

end_function:
	return error;
}

/**
 *	u32 sep_calculate_lli_table_max_size - size the LLI table
 *	@sep: pointer to struct sep_device
 *	@lli_in_array_ptr
 *	@num_array_entries
 *	@last_table_flag
 *
 *	This function calculates the size of data that can be inserted into
 *	the lli table from this array, such that either the table is full
 *	(all entries are entered), or there are no more entries in the
 *	lli array
 */
static u32 sep_calculate_lli_table_max_size(struct sep_device *sep,
	struct sep_lli_entry *lli_in_array_ptr,
	u32 num_array_entries,
	u32 *last_table_flag)
{
	u32 counter;
	/* Table data size */
	u32 table_data_size = 0;
	/* Data size for the next table */
	u32 next_table_data_size;

	*last_table_flag = 0;

	/*
	 * Calculate the data in the out lli table till we fill the whole
	 * table or till the data has ended
	 */
	for (counter = 0;
		(counter < (SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP - 1)) &&
			(counter < num_array_entries); counter++)
		table_data_size += lli_in_array_ptr[counter].block_size;

	/*
	 * Check if we reached the last entry,
	 * meaning this ia the last table to build,
	 * and no need to check the block alignment
	 */
	if (counter == num_array_entries) {
		/* Set the last table flag */
		*last_table_flag = 1;
		goto end_function;
	}

	/*
	 * Calculate the data size of the next table.
	 * Stop if no entries left or if data size is more the DMA restriction
	 */
	next_table_data_size = 0;
	for (; counter < num_array_entries; counter++) {
		next_table_data_size += lli_in_array_ptr[counter].block_size;
		if (next_table_data_size >= SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE)
			break;
	}

	/*
	 * Check if the next table data size is less then DMA rstriction.
	 * if it is - recalculate the current table size, so that the next
	 * table data size will be adaquete for DMA
	 */
	if (next_table_data_size &&
		next_table_data_size < SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE)

		table_data_size -= (SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE -
			next_table_data_size);

end_function:
	return table_data_size;
}

/**
 *	sep_build_lli_table - build an lli array for the given table
 *	@sep: pointer to struct sep_device
 *	@lli_array_ptr: pointer to lli array
 *	@lli_table_ptr: pointer to lli table
 *	@num_processed_entries_ptr: pointer to number of entries
 *	@num_table_entries_ptr: pointer to number of tables
 *	@table_data_size: total data size
 *
 *	Builds ant lli table from the lli_array according to
 *	the given size of data
 */
static void sep_build_lli_table(struct sep_device *sep,
	struct sep_lli_entry	*lli_array_ptr,
	struct sep_lli_entry	*lli_table_ptr,
	u32 *num_processed_entries_ptr,
	u32 *num_table_entries_ptr,
	u32 table_data_size)
{
	/* Current table data size */
	u32 curr_table_data_size;
	/* Counter of lli array entry */
	u32 array_counter;

	/* Init currrent table data size and lli array entry counter */
	curr_table_data_size = 0;
	array_counter = 0;
	*num_table_entries_ptr = 1;

	dev_dbg(&sep->pdev->dev, "build lli table table_data_size is %x\n", table_data_size);

	/* Fill the table till table size reaches the needed amount */
	while (curr_table_data_size < table_data_size) {
		/* Update the number of entries in table */
		(*num_table_entries_ptr)++;

		lli_table_ptr->bus_address =
			cpu_to_le32(lli_array_ptr[array_counter].bus_address);

		lli_table_ptr->block_size =
			cpu_to_le32(lli_array_ptr[array_counter].block_size);

		curr_table_data_size += lli_array_ptr[array_counter].block_size;

		dev_dbg(&sep->pdev->dev, "lli_table_ptr is %p\n",
								lli_table_ptr);
		dev_dbg(&sep->pdev->dev, "lli_table_ptr->bus_address is %08lx\n",
				(unsigned long)lli_table_ptr->bus_address);
		dev_dbg(&sep->pdev->dev, "lli_table_ptr->block_size is %x\n",
			lli_table_ptr->block_size);

		/* Check for overflow of the table data */
		if (curr_table_data_size > table_data_size) {
			dev_dbg(&sep->pdev->dev,
				"curr_table_data_size too large\n");

			/* Update the size of block in the table */
			lli_table_ptr->block_size -=
			cpu_to_le32((curr_table_data_size - table_data_size));

			/* Update the physical address in the lli array */
			lli_array_ptr[array_counter].bus_address +=
			cpu_to_le32(lli_table_ptr->block_size);

			/* Update the block size left in the lli array */
			lli_array_ptr[array_counter].block_size =
				(curr_table_data_size - table_data_size);
		} else
			/* Advance to the next entry in the lli_array */
			array_counter++;

		dev_dbg(&sep->pdev->dev,
			"lli_table_ptr->bus_address is %08lx\n",
				(unsigned long)lli_table_ptr->bus_address);
		dev_dbg(&sep->pdev->dev,
			"lli_table_ptr->block_size is %x\n",
			lli_table_ptr->block_size);

		/* Move to the next entry in table */
		lli_table_ptr++;
	}

	/* Set the info entry to default */
	lli_table_ptr->bus_address = 0xffffffff;
	lli_table_ptr->block_size = 0;

	/* Set the output parameter */
	*num_processed_entries_ptr += array_counter;

}

/**
 *	sep_shared_area_virt_to_bus - map shared area to bus address
 *	@sep: pointer to struct sep_device
 *	@virt_address: virtual address to convert
 *
 *	This functions returns the physical address inside shared area according
 *	to the virtual address. It can be either on the externa RAM device
 *	(ioremapped), or on the system RAM
 *	This implementation is for the external RAM
 */
static dma_addr_t sep_shared_area_virt_to_bus(struct sep_device *sep,
	void *virt_address)
{
	dev_dbg(&sep->pdev->dev, "sh virt to phys v %p\n", virt_address);
	dev_dbg(&sep->pdev->dev, "sh virt to phys p %08lx\n",
		(unsigned long)
		sep->shared_bus + (virt_address - sep->shared_addr));

	return sep->shared_bus + (size_t)(virt_address - sep->shared_addr);
}

/**
 *	sep_shared_area_bus_to_virt - map shared area bus address to kernel
 *	@sep: pointer to struct sep_device
 *	@bus_address: bus address to convert
 *
 *	This functions returns the virtual address inside shared area
 *	according to the physical address. It can be either on the
 *	externa RAM device (ioremapped), or on the system RAM
 *	This implementation is for the external RAM
 */
static void *sep_shared_area_bus_to_virt(struct sep_device *sep,
	dma_addr_t bus_address)
{
	dev_dbg(&sep->pdev->dev, "shared bus to virt b=%lx v=%lx\n",
		(unsigned long)bus_address, (unsigned long)(sep->shared_addr +
			(size_t)(bus_address - sep->shared_bus)));

	return sep->shared_addr	+ (size_t)(bus_address - sep->shared_bus);
}

/**
 *	sep_debug_print_lli_tables - dump LLI table
 *	@sep: pointer to struct sep_device
 *	@lli_table_ptr: pointer to sep_lli_entry
 *	@num_table_entries: number of entries
 *	@table_data_size: total data size
 *
 *	Walk the the list of the print created tables and print all the data
 */
static void sep_debug_print_lli_tables(struct sep_device *sep,
	struct sep_lli_entry *lli_table_ptr,
	unsigned long num_table_entries,
	unsigned long table_data_size)
{
	unsigned long table_count = 1;
	unsigned long entries_count = 0;

	dev_dbg(&sep->pdev->dev, "sep_debug_print_lli_tables start\n");

	while ((unsigned long) lli_table_ptr->bus_address != 0xffffffff) {
		dev_dbg(&sep->pdev->dev,
			"lli table %08lx, table_data_size is %lu\n",
			table_count, table_data_size);
		dev_dbg(&sep->pdev->dev, "num_table_entries is %lu\n",
							num_table_entries);

		/* Print entries of the table (without info entry) */
		for (entries_count = 0; entries_count < num_table_entries;
			entries_count++, lli_table_ptr++) {

			dev_dbg(&sep->pdev->dev,
				"lli_table_ptr address is %08lx\n",
				(unsigned long) lli_table_ptr);

			dev_dbg(&sep->pdev->dev,
				"phys address is %08lx block size is %x\n",
				(unsigned long)lli_table_ptr->bus_address,
				lli_table_ptr->block_size);
		}
		/* Point to the info entry */
		lli_table_ptr--;

		dev_dbg(&sep->pdev->dev,
			"phys lli_table_ptr->block_size is %x\n",
			lli_table_ptr->block_size);

		dev_dbg(&sep->pdev->dev,
			"phys lli_table_ptr->physical_address is %08lu\n",
			(unsigned long)lli_table_ptr->bus_address);


		table_data_size = lli_table_ptr->block_size & 0xffffff;
		num_table_entries = (lli_table_ptr->block_size >> 24) & 0xff;

		dev_dbg(&sep->pdev->dev,
			"phys table_data_size is %lu num_table_entries is"
			" %lu bus_address is%lu\n", table_data_size,
			num_table_entries, (unsigned long)lli_table_ptr->bus_address);

		if ((unsigned long)lli_table_ptr->bus_address != 0xffffffff)
			lli_table_ptr = (struct sep_lli_entry *)
				sep_shared_bus_to_virt(sep,
				(unsigned long)lli_table_ptr->bus_address);

		table_count++;
	}
	dev_dbg(&sep->pdev->dev, "sep_debug_print_lli_tables end\n");
}


/**
 *	sep_prepare_empty_lli_table - create a blank LLI table
 *	@sep: pointer to struct sep_device
 *	@lli_table_addr_ptr: pointer to lli table
 *	@num_entries_ptr: pointer to number of entries
 *	@table_data_size_ptr: point to table data size
 *
 *	This function creates empty lli tables when there is no data
 */
static void sep_prepare_empty_lli_table(struct sep_device *sep,
		dma_addr_t *lli_table_addr_ptr,
		u32 *num_entries_ptr,
		u32 *table_data_size_ptr)
{
	struct sep_lli_entry *lli_table_ptr;

	/* Find the area for new table */
	lli_table_ptr =
		(struct sep_lli_entry *)(sep->shared_addr +
		SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
		sep->num_lli_tables_created * sizeof(struct sep_lli_entry) *
			SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);

	lli_table_ptr->bus_address = 0;
	lli_table_ptr->block_size = 0;

	lli_table_ptr++;
	lli_table_ptr->bus_address = 0xFFFFFFFF;
	lli_table_ptr->block_size = 0;

	/* Set the output parameter value */
	*lli_table_addr_ptr = sep->shared_bus +
		SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
		sep->num_lli_tables_created *
		sizeof(struct sep_lli_entry) *
		SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;

	/* Set the num of entries and table data size for empty table */
	*num_entries_ptr = 2;
	*table_data_size_ptr = 0;

	/* Update the number of created tables */
	sep->num_lli_tables_created++;
}

/**
 *	sep_prepare_input_dma_table - prepare input DMA mappings
 *	@sep: pointer to struct sep_device
 *	@data_size:
 *	@block_size:
 *	@lli_table_ptr:
 *	@num_entries_ptr:
 *	@table_data_size_ptr:
 *	@is_kva: set for kernel data (kernel cryptio call)
 *
 *	This function prepares only input DMA table for synhronic symmetric
 *	operations (HASH)
 *	Note that all bus addresses that are passed to the SEP
 *	are in 32 bit format; the SEP is a 32 bit device
 */
static int sep_prepare_input_dma_table(struct sep_device *sep,
	unsigned long app_virt_addr,
	u32 data_size,
	u32 block_size,
	dma_addr_t *lli_table_ptr,
	u32 *num_entries_ptr,
	u32 *table_data_size_ptr,
	bool is_kva)
{
	int error = 0;
	/* Pointer to the info entry of the table - the last entry */
	struct sep_lli_entry *info_entry_ptr;
	/* Array of pointers to page */
	struct sep_lli_entry *lli_array_ptr;
	/* Points to the first entry to be processed in the lli_in_array */
	u32 current_entry = 0;
	/* Num entries in the virtual buffer */
	u32 sep_lli_entries = 0;
	/* Lli table pointer */
	struct sep_lli_entry *in_lli_table_ptr;
	/* The total data in one table */
	u32 table_data_size = 0;
	/* Flag for last table */
	u32 last_table_flag = 0;
	/* Number of entries in lli table */
	u32 num_entries_in_table = 0;
	/* Next table address */
	void *lli_table_alloc_addr = 0;

	dev_dbg(&sep->pdev->dev, "prepare intput dma table data_size is %x\n", data_size);
	dev_dbg(&sep->pdev->dev, "block_size is %x\n", block_size);

	/* Initialize the pages pointers */
	sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL;
	sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = 0;

	/* Set the kernel address for first table to be allocated */
	lli_table_alloc_addr = (void *)(sep->shared_addr +
		SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
		sep->num_lli_tables_created * sizeof(struct sep_lli_entry) *
		SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);

	if (data_size == 0) {
		/* Special case  - create meptu table - 2 entries, zero data */
		sep_prepare_empty_lli_table(sep, lli_table_ptr,
				num_entries_ptr, table_data_size_ptr);
		goto update_dcb_counter;
	}

	/* Check if the pages are in Kernel Virtual Address layout */
	if (is_kva == true)
		/* Lock the pages in the kernel */
		error = sep_lock_kernel_pages(sep, app_virt_addr,
			data_size, &lli_array_ptr, SEP_DRIVER_IN_FLAG);
	else
		/*
		 * Lock the pages of the user buffer
		 * and translate them to pages
		 */
		error = sep_lock_user_pages(sep, app_virt_addr,
			data_size, &lli_array_ptr, SEP_DRIVER_IN_FLAG);

	if (error)
		goto end_function;

	dev_dbg(&sep->pdev->dev, "output sep_in_num_pages is %x\n",
		sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages);

	current_entry = 0;
	info_entry_ptr = NULL;

	sep_lli_entries = sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages;

	/* Loop till all the entries in in array are not processed */
	while (current_entry < sep_lli_entries) {

		/* Set the new input and output tables */
		in_lli_table_ptr =
			(struct sep_lli_entry *)lli_table_alloc_addr;

		lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
			SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;

		if (lli_table_alloc_addr >
			((void *)sep->shared_addr +
			SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
			SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES)) {

			error = -ENOMEM;
			goto end_function_error;

		}

		/* Update the number of created tables */
		sep->num_lli_tables_created++;

		/* Calculate the maximum size of data for input table */
		table_data_size = sep_calculate_lli_table_max_size(sep,
			&lli_array_ptr[current_entry],
			(sep_lli_entries - current_entry),
			&last_table_flag);

		/*
		 * If this is not the last table -
		 * then allign it to the block size
		 */
		if (!last_table_flag)
			table_data_size =
				(table_data_size / block_size) * block_size;

		dev_dbg(&sep->pdev->dev, "output table_data_size is %x\n",
							table_data_size);

		/* Construct input lli table */
		sep_build_lli_table(sep, &lli_array_ptr[current_entry],
			in_lli_table_ptr,
			&current_entry, &num_entries_in_table, table_data_size);

		if (info_entry_ptr == NULL) {

			/* Set the output parameters to physical addresses */
			*lli_table_ptr = sep_shared_area_virt_to_bus(sep,
				in_lli_table_ptr);
			*num_entries_ptr = num_entries_in_table;
			*table_data_size_ptr = table_data_size;

			dev_dbg(&sep->pdev->dev,
				"output lli_table_in_ptr is %08lx\n",
				(unsigned long)*lli_table_ptr);

		} else {
			/* Update the info entry of the previous in table */
			info_entry_ptr->bus_address =
				sep_shared_area_virt_to_bus(sep,
							in_lli_table_ptr);
			info_entry_ptr->block_size =
				((num_entries_in_table) << 24) |
				(table_data_size);
		}
		/* Save the pointer to the info entry of the current tables */
		info_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
	}
	/* Print input tables */
	sep_debug_print_lli_tables(sep, (struct sep_lli_entry *)
		sep_shared_area_bus_to_virt(sep, *lli_table_ptr),
		*num_entries_ptr, *table_data_size_ptr);
	/* The array of the pages */
	kfree(lli_array_ptr);

update_dcb_counter:
	/* Update DCB counter */
	sep->nr_dcb_creat++;
	goto end_function;

end_function_error:
	/* Free all the allocated resources */
	kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_map_array);
	kfree(lli_array_ptr);
	kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_page_array);

end_function:
	return error;

}
/**
 *	sep_construct_dma_tables_from_lli - prepare AES/DES mappings
 *	@sep: pointer to struct sep_device
 *	@lli_in_array:
 *	@sep_in_lli_entries:
 *	@lli_out_array:
 *	@sep_out_lli_entries
 *	@block_size
 *	@lli_table_in_ptr
 *	@lli_table_out_ptr
 *	@in_num_entries_ptr
 *	@out_num_entries_ptr
 *	@table_data_size_ptr
 *
 *	This function creates the input and output DMA tables for
 *	symmetric operations (AES/DES) according to the block
 *	size from LLI arays
 *	Note that all bus addresses that are passed to the SEP
 *	are in 32 bit format; the SEP is a 32 bit device
 */
static int sep_construct_dma_tables_from_lli(
	struct sep_device *sep,
	struct sep_lli_entry *lli_in_array,
	u32	sep_in_lli_entries,
	struct sep_lli_entry *lli_out_array,
	u32	sep_out_lli_entries,
	u32	block_size,
	dma_addr_t *lli_table_in_ptr,
	dma_addr_t *lli_table_out_ptr,
	u32	*in_num_entries_ptr,
	u32	*out_num_entries_ptr,
	u32	*table_data_size_ptr)
{
	/* Points to the area where next lli table can be allocated */
	void *lli_table_alloc_addr = 0;
	/* Input lli table */
	struct sep_lli_entry *in_lli_table_ptr = NULL;
	/* Output lli table */
	struct sep_lli_entry *out_lli_table_ptr = NULL;
	/* Pointer to the info entry of the table - the last entry */
	struct sep_lli_entry *info_in_entry_ptr = NULL;
	/* Pointer to the info entry of the table - the last entry */
	struct sep_lli_entry *info_out_entry_ptr = NULL;
	/* Points to the first entry to be processed in the lli_in_array */
	u32 current_in_entry = 0;
	/* Points to the first entry to be processed in the lli_out_array */
	u32 current_out_entry = 0;
	/* Max size of the input table */
	u32 in_table_data_size = 0;
	/* Max size of the output table */
	u32 out_table_data_size = 0;
	/* Flag te signifies if this is the last tables build */
	u32 last_table_flag = 0;
	/* The data size that should be in table */
	u32 table_data_size = 0;
	/* Number of etnries in the input table */
	u32 num_entries_in_table = 0;
	/* Number of etnries in the output table */
	u32 num_entries_out_table = 0;

	/* Initiate to point after the message area */
	lli_table_alloc_addr = (void *)(sep->shared_addr +
		SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
		(sep->num_lli_tables_created *
		(sizeof(struct sep_lli_entry) *
		SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP)));

	/* Loop till all the entries in in array are not processed */
	while (current_in_entry < sep_in_lli_entries) {
		/* Set the new input and output tables */
		in_lli_table_ptr =
			(struct sep_lli_entry *)lli_table_alloc_addr;

		lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
			SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;

		/* Set the first output tables */
		out_lli_table_ptr =
			(struct sep_lli_entry *)lli_table_alloc_addr;

		/* Check if the DMA table area limit was overrun */
		if ((lli_table_alloc_addr + sizeof(struct sep_lli_entry) *
			SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP) >
			((void *)sep->shared_addr +
			SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
			SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES)) {

			dev_warn(&sep->pdev->dev, "dma table limit overrun\n");
			return -ENOMEM;
		}

		/* Update the number of the lli tables created */
		sep->num_lli_tables_created += 2;

		lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
			SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;

		/* Calculate the maximum size of data for input table */
		in_table_data_size =
			sep_calculate_lli_table_max_size(sep,
			&lli_in_array[current_in_entry],
			(sep_in_lli_entries - current_in_entry),
			&last_table_flag);

		/* Calculate the maximum size of data for output table */
		out_table_data_size =
			sep_calculate_lli_table_max_size(sep,
			&lli_out_array[current_out_entry],
			(sep_out_lli_entries - current_out_entry),
			&last_table_flag);

		dev_dbg(&sep->pdev->dev,
			"construct tables from lli in_table_data_size is %x\n",
			in_table_data_size);

		dev_dbg(&sep->pdev->dev,
			"construct tables from lli out_table_data_size is %x\n",
			out_table_data_size);

		table_data_size = in_table_data_size;

		if (!last_table_flag) {
			/*
			 * If this is not the last table,
			 * then must check where the data is smallest
			 * and then align it to the block size
			 */
			if (table_data_size > out_table_data_size)
				table_data_size = out_table_data_size;

			/*
			 * Now calculate the table size so that
			 * it will be module block size
			 */
			table_data_size = (table_data_size / block_size) *
				block_size;
		}

		/* Construct input lli table */
		sep_build_lli_table(sep, &lli_in_array[current_in_entry],
			in_lli_table_ptr,
			&current_in_entry,
			&num_entries_in_table,
			table_data_size);

		/* Construct output lli table */
		sep_build_lli_table(sep, &lli_out_array[current_out_entry],
			out_lli_table_ptr,
			&current_out_entry,
			&num_entries_out_table,
			table_data_size);

		/* If info entry is null - this is the first table built */
		if (info_in_entry_ptr == NULL) {
			/* Set the output parameters to physical addresses */
			*lli_table_in_ptr =
			sep_shared_area_virt_to_bus(sep, in_lli_table_ptr);

			*in_num_entries_ptr = num_entries_in_table;

			*lli_table_out_ptr =
				sep_shared_area_virt_to_bus(sep,
				out_lli_table_ptr);

			*out_num_entries_ptr = num_entries_out_table;
			*table_data_size_ptr = table_data_size;

			dev_dbg(&sep->pdev->dev,
			"output lli_table_in_ptr is %08lx\n",
				(unsigned long)*lli_table_in_ptr);
			dev_dbg(&sep->pdev->dev,
			"output lli_table_out_ptr is %08lx\n",
				(unsigned long)*lli_table_out_ptr);
		} else {
			/* Update the info entry of the previous in table */
			info_in_entry_ptr->bus_address =
				sep_shared_area_virt_to_bus(sep,
				in_lli_table_ptr);

			info_in_entry_ptr->block_size =
				((num_entries_in_table) << 24) |
				(table_data_size);

			/* Update the info entry of the previous in table */
			info_out_entry_ptr->bus_address =
				sep_shared_area_virt_to_bus(sep,
				out_lli_table_ptr);

			info_out_entry_ptr->block_size =
				((num_entries_out_table) << 24) |
				(table_data_size);

			dev_dbg(&sep->pdev->dev,
				"output lli_table_in_ptr:%08lx %08x\n",
				(unsigned long)info_in_entry_ptr->bus_address,
				info_in_entry_ptr->block_size);

			dev_dbg(&sep->pdev->dev,
				"output lli_table_out_ptr:%08lx  %08x\n",
				(unsigned long)info_out_entry_ptr->bus_address,
				info_out_entry_ptr->block_size);
		}

		/* Save the pointer to the info entry of the current tables */
		info_in_entry_ptr = in_lli_table_ptr +
			num_entries_in_table - 1;
		info_out_entry_ptr = out_lli_table_ptr +
			num_entries_out_table - 1;

		dev_dbg(&sep->pdev->dev,
			"output num_entries_out_table is %x\n",
			(u32)num_entries_out_table);
		dev_dbg(&sep->pdev->dev,
			"output info_in_entry_ptr is %lx\n",
			(unsigned long)info_in_entry_ptr);
		dev_dbg(&sep->pdev->dev,
			"output info_out_entry_ptr is %lx\n",
			(unsigned long)info_out_entry_ptr);
	}

	/* Print input tables */
	sep_debug_print_lli_tables(sep,
	(struct sep_lli_entry *)
	sep_shared_area_bus_to_virt(sep, *lli_table_in_ptr),
	*in_num_entries_ptr,
	*table_data_size_ptr);

	/* Print output tables */
	sep_debug_print_lli_tables(sep,
	(struct sep_lli_entry *)
	sep_shared_area_bus_to_virt(sep, *lli_table_out_ptr),
	*out_num_entries_ptr,
	*table_data_size_ptr);

	return 0;
}

/**
 *	sep_prepare_input_output_dma_table - prepare DMA I/O table
 *	@app_virt_in_addr:
 *	@app_virt_out_addr:
 *	@data_size:
 *	@block_size:
 *	@lli_table_in_ptr:
 *	@lli_table_out_ptr:
 *	@in_num_entries_ptr:
 *	@out_num_entries_ptr:
 *	@table_data_size_ptr:
 *	@is_kva: set for kernel data; used only for kernel crypto module
 *
 *	This function builds input and output DMA tables for synhronic
 *	symmetric operations (AES, DES, HASH). It also checks that each table
 *	is of the modular block size
 *	Note that all bus addresses that are passed to the SEP
 *	are in 32 bit format; the SEP is a 32 bit device
 */
static int sep_prepare_input_output_dma_table(struct sep_device *sep,
	unsigned long app_virt_in_addr,
	unsigned long app_virt_out_addr,
	u32 data_size,
	u32 block_size,
	dma_addr_t *lli_table_in_ptr,
	dma_addr_t *lli_table_out_ptr,
	u32 *in_num_entries_ptr,
	u32 *out_num_entries_ptr,
	u32 *table_data_size_ptr,
	bool is_kva)

{
	int error = 0;
	/* Array of pointers of page */
	struct sep_lli_entry *lli_in_array;
	/* Array of pointers of page */
	struct sep_lli_entry *lli_out_array;

	if (data_size == 0) {
		/* Prepare empty table for input and output */
		sep_prepare_empty_lli_table(sep, lli_table_in_ptr,
			in_num_entries_ptr, table_data_size_ptr);

		sep_prepare_empty_lli_table(sep, lli_table_out_ptr,
			out_num_entries_ptr, table_data_size_ptr);

		goto update_dcb_counter;
	}

	/* Initialize the pages pointers */
	sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL;
	sep->dma_res_arr[sep->nr_dcb_creat].out_page_array = NULL;

	/* Lock the pages of the buffer and translate them to pages */
	if (is_kva == true) {
		error = sep_lock_kernel_pages(sep, app_virt_in_addr,
			data_size, &lli_in_array, SEP_DRIVER_IN_FLAG);

		if (error) {
			dev_warn(&sep->pdev->dev,
				"lock kernel for in failed\n");
			goto end_function;
		}

		error = sep_lock_kernel_pages(sep, app_virt_out_addr,
			data_size, &lli_out_array, SEP_DRIVER_OUT_FLAG);

		if (error) {
			dev_warn(&sep->pdev->dev,
				"lock kernel for out failed\n");
			goto end_function;
		}
	}

	else {
		error = sep_lock_user_pages(sep, app_virt_in_addr,
				data_size, &lli_in_array, SEP_DRIVER_IN_FLAG);
		if (error) {
			dev_warn(&sep->pdev->dev,
				"sep_lock_user_pages for input virtual buffer failed\n");
			goto end_function;
		}

		error = sep_lock_user_pages(sep, app_virt_out_addr,
			data_size, &lli_out_array, SEP_DRIVER_OUT_FLAG);

		if (error) {
			dev_warn(&sep->pdev->dev,
				"sep_lock_user_pages for output virtual buffer failed\n");
			goto end_function_free_lli_in;
		}
	}

	dev_dbg(&sep->pdev->dev, "prep input output dma table sep_in_num_pages is %x\n",
		sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages);
	dev_dbg(&sep->pdev->dev, "sep_out_num_pages is %x\n",
		sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages);
	dev_dbg(&sep->pdev->dev, "SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP is %x\n",
		SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);

	/* Call the fucntion that creates table from the lli arrays */
	error = sep_construct_dma_tables_from_lli(sep, lli_in_array,
		sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages,
		lli_out_array,
		sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages,
		block_size, lli_table_in_ptr, lli_table_out_ptr,
		in_num_entries_ptr, out_num_entries_ptr, table_data_size_ptr);

	if (error) {
		dev_warn(&sep->pdev->dev,
			"sep_construct_dma_tables_from_lli failed\n");
		goto end_function_with_error;
	}

	kfree(lli_out_array);
	kfree(lli_in_array);

update_dcb_counter:
	/* Update DCB counter */
	sep->nr_dcb_creat++;

	goto end_function;

end_function_with_error:
	kfree(sep->dma_res_arr[sep->nr_dcb_creat].out_map_array);
	kfree(sep->dma_res_arr[sep->nr_dcb_creat].out_page_array);
	kfree(lli_out_array);


end_function_free_lli_in:
	kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_map_array);
	kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_page_array);
	kfree(lli_in_array);

end_function:

	return error;

}

/**
 *	sep_prepare_input_output_dma_table_in_dcb - prepare control blocks
 *	@app_in_address: unsigned long; for data buffer in (user space)
 *	@app_out_address: unsigned long; for data buffer out (user space)
 *	@data_in_size: u32; for size of data
 *	@block_size: u32; for block size
 *	@tail_block_size: u32; for size of tail block
 *	@isapplet: bool; to indicate external app
 *	@is_kva: bool; kernel buffer; only used for kernel crypto module
 *
 *	This function prepares the linked DMA tables and puts the
 *	address for the linked list of tables inta a DCB (data control
 *	block) the address of which is known by the SEP hardware
 *	Note that all bus addresses that are passed to the SEP
 *	are in 32 bit format; the SEP is a 32 bit device
 */
static int sep_prepare_input_output_dma_table_in_dcb(struct sep_device *sep,
	unsigned long  app_in_address,
	unsigned long  app_out_address,
	u32  data_in_size,
	u32  block_size,
	u32  tail_block_size,
	bool isapplet,
	bool	is_kva)
{
	int error = 0;
	/* Size of tail */
	u32 tail_size = 0;
	/* Address of the created DCB table */
	struct sep_dcblock *dcb_table_ptr = NULL;
	/* The physical address of the first input DMA table */
	dma_addr_t in_first_mlli_address = 0;
	/* Number of entries in the first input DMA table */
	u32  in_first_num_entries = 0;
	/* The physical address of the first output DMA table */
	dma_addr_t  out_first_mlli_address = 0;
	/* Number of entries in the first output DMA table */
	u32  out_first_num_entries = 0;
	/* Data in the first input/output table */
	u32  first_data_size = 0;

	if (sep->nr_dcb_creat == SEP_MAX_NUM_SYNC_DMA_OPS) {
		/* No more DCBs to allocate */
		dev_warn(&sep->pdev->dev, "no more DCBs available\n");
		error = -ENOSPC;
		goto end_function;
	}

	/* Allocate new DCB */
	dcb_table_ptr = (struct sep_dcblock *)(sep->shared_addr +
		SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES +
		(sep->nr_dcb_creat * sizeof(struct sep_dcblock)));

	/* Set the default values in the DCB */
	dcb_table_ptr->input_mlli_address = 0;
	dcb_table_ptr->input_mlli_num_entries = 0;
	dcb_table_ptr->input_mlli_data_size = 0;
	dcb_table_ptr->output_mlli_address = 0;
	dcb_table_ptr->output_mlli_num_entries = 0;
	dcb_table_ptr->output_mlli_data_size = 0;
	dcb_table_ptr->tail_data_size = 0;
	dcb_table_ptr->out_vr_tail_pt = 0;

	if (isapplet == true) {

		/* Check if there is enough data for DMA operation */
		if (data_in_size < SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE) {
			if (is_kva == true) {
				memcpy(dcb_table_ptr->tail_data,
					(void *)app_in_address, data_in_size);
			} else {
				if (copy_from_user(dcb_table_ptr->tail_data,
					(void __user *)app_in_address,
					data_in_size)) {
					error = -EFAULT;
					goto end_function;
				}
			}

			dcb_table_ptr->tail_data_size = data_in_size;

			/* Set the output user-space address for mem2mem op */
			if (app_out_address)
				dcb_table_ptr->out_vr_tail_pt =
							(aligned_u64)app_out_address;

			/*
			 * Update both data length parameters in order to avoid
			 * second data copy and allow building of empty mlli
			 * tables
			 */
			tail_size = 0x0;
			data_in_size = 0x0;

		} else {
			if (!app_out_address) {
				tail_size = data_in_size % block_size;
				if (!tail_size) {
					if (tail_block_size == block_size)
						tail_size = block_size;
				}
			} else {
				tail_size = 0;
			}
		}
		if (tail_size) {
			if (is_kva == true) {
				memcpy(dcb_table_ptr->tail_data,
					(void *)(app_in_address + data_in_size -
					tail_size), tail_size);
			} else {
				/* We have tail data - copy it to DCB */
				if (copy_from_user(dcb_table_ptr->tail_data,
					(void *)(app_in_address +
					data_in_size - tail_size), tail_size)) {
					error = -EFAULT;
					goto end_function;
				}
			}
			if (app_out_address)
				/*
				 * Calculate the output address
				 * according to tail data size
				 */
				dcb_table_ptr->out_vr_tail_pt =
					(aligned_u64)app_out_address + data_in_size
					- tail_size;

			/* Save the real tail data size */
			dcb_table_ptr->tail_data_size = tail_size;
			/*
			 * Update the data size without the tail
			 * data size AKA data for the dma
			 */
			data_in_size = (data_in_size - tail_size);
		}
	}
	/* Check if we need to build only input table or input/output */
	if (app_out_address) {
		/* Prepare input/output tables */
		error = sep_prepare_input_output_dma_table(sep,
			app_in_address,
			app_out_address,
			data_in_size,
			block_size,
			&in_first_mlli_address,
			&out_first_mlli_address,
			&in_first_num_entries,
			&out_first_num_entries,
			&first_data_size,
			is_kva);
	} else {
		/* Prepare input tables */
		error = sep_prepare_input_dma_table(sep,
			app_in_address,
			data_in_size,
			block_size,
			&in_first_mlli_address,
			&in_first_num_entries,
			&first_data_size,
			is_kva);
	}

	if (error) {
		dev_warn(&sep->pdev->dev, "prepare DMA table call failed from prepare DCB call\n");
		goto end_function;
	}

	/* Set the DCB values */
	dcb_table_ptr->input_mlli_address = in_first_mlli_address;
	dcb_table_ptr->input_mlli_num_entries = in_first_num_entries;
	dcb_table_ptr->input_mlli_data_size = first_data_size;
	dcb_table_ptr->output_mlli_address = out_first_mlli_address;
	dcb_table_ptr->output_mlli_num_entries = out_first_num_entries;
	dcb_table_ptr->output_mlli_data_size = first_data_size;

end_function:
	return error;

}


/**
 *	sep_create_sync_dma_tables_handler - create sync DMA tables
 *	@sep: pointer to struct sep_device
 *	@arg: pointer to struct bld_syn_tab_struct
 *
 *	Handle the request for creation of the DMA tables for the synchronic
 *	symmetric operations (AES,DES). Note that all bus addresses that are
 *	passed to the SEP are in 32 bit format; the SEP is a 32 bit device
 */
static int sep_create_sync_dma_tables_handler(struct sep_device *sep,
						unsigned long arg)
{
	int error = 0;

	/* Command arguments */
	struct bld_syn_tab_struct command_args;

	if (copy_from_user(&command_args, (void __user *)arg,
					sizeof(struct bld_syn_tab_struct))) {
		error = -EFAULT;
		goto end_function;
	}

	dev_dbg(&sep->pdev->dev, "create dma table handler app_in_address is %08llx\n",
						command_args.app_in_address);
	dev_dbg(&sep->pdev->dev, "app_out_address is %08llx\n",
						command_args.app_out_address);
	dev_dbg(&sep->pdev->dev, "data_size is %u\n",
						command_args.data_in_size);
	dev_dbg(&sep->pdev->dev, "block_size is %u\n",
						command_args.block_size);

	/* Validate user parameters */
	if (!command_args.app_in_address) {
		error = -EINVAL;
		goto end_function;
	}

	error = sep_prepare_input_output_dma_table_in_dcb(sep,
		(unsigned long)command_args.app_in_address,
		(unsigned long)command_args.app_out_address,
		command_args.data_in_size,
		command_args.block_size,
		0x0,
		false,
		false);

end_function:
	return error;
}

/**
 *	sep_free_dma_tables_and_dcb - free DMA tables and DCBs
 *	@sep: pointer to struct sep_device
 *	@isapplet: indicates external application (used for kernel access)
 *	@is_kva: indicates kernel addresses (only used for kernel crypto)
 *
 *	This function frees the DMA tables and DCB
 */
static int sep_free_dma_tables_and_dcb(struct sep_device *sep, bool isapplet,
	bool is_kva)
{
	int i = 0;
	int error = 0;
	int error_temp = 0;
	struct sep_dcblock *dcb_table_ptr;
	unsigned long pt_hold;
	void *tail_pt;

	if (isapplet == true) {
		/* Set pointer to first DCB table */
		dcb_table_ptr = (struct sep_dcblock *)
			(sep->shared_addr +
			SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES);

		/* Go over each DCB and see if tail pointer must be updated */
		for (i = 0; i < sep->nr_dcb_creat; i++, dcb_table_ptr++) {
			if (dcb_table_ptr->out_vr_tail_pt) {
				pt_hold = (unsigned long)dcb_table_ptr->out_vr_tail_pt;
				tail_pt = (void *)pt_hold;
				if (is_kva == true) {
					memcpy(tail_pt,
						dcb_table_ptr->tail_data,
						dcb_table_ptr->tail_data_size);
				} else {
					error_temp = copy_to_user(
						tail_pt,
						dcb_table_ptr->tail_data,
						dcb_table_ptr->tail_data_size);
				}
				if (error_temp) {
					/* Release the DMA resource */
					error = -EFAULT;
					break;
				}
			}
		}
	}
	/* Free the output pages, if any */
	sep_free_dma_table_data_handler(sep);

	return error;
}

/**
 *	sep_get_static_pool_addr_handler - get static pool address
 *	@sep: pointer to struct sep_device
 *
 *	This function sets the bus and virtual addresses of the static pool
 */
static int sep_get_static_pool_addr_handler(struct sep_device *sep)
{
	u32 *static_pool_addr = NULL;

	static_pool_addr = (u32 *)(sep->shared_addr +
		SEP_DRIVER_SYSTEM_RAR_MEMORY_OFFSET_IN_BYTES);

	static_pool_addr[0] = SEP_STATIC_POOL_VAL_TOKEN;
	static_pool_addr[1] = (u32)sep->shared_bus +
		SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES;

	dev_dbg(&sep->pdev->dev, "static pool segment: physical %x\n",
		(u32)static_pool_addr[1]);

	return 0;
}

/**
 *	sep_start_handler - start device
 *	@sep: pointer to struct sep_device
 */
static int sep_start_handler(struct sep_device *sep)
{
	unsigned long reg_val;
	unsigned long error = 0;

	/* Wait in polling for message from SEP */
	do {
		reg_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
	} while (!reg_val);

	/* Check the value */
	if (reg_val == 0x1)
		/* Fatal error - read error status from GPRO */
		error = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR0_REG_ADDR);
	return error;
}

/**
 *	ep_check_sum_calc - checksum messages
 *	@data: buffer to checksum
 *	@length: buffer size
 *
 *	This function performs a checksum for messages that are sent
 *	to the SEP.
 */
static u32 sep_check_sum_calc(u8 *data, u32 length)
{
	u32 sum = 0;
	u16 *Tdata = (u16 *)data;

	while (length > 1) {
		/*  This is the inner loop */
		sum += *Tdata++;
		length -= 2;
	}

	/*  Add left-over byte, if any */
	if (length > 0)
		sum += *(u8 *)Tdata;

	/*  Fold 32-bit sum to 16 bits */
	while (sum>>16)
		sum = (sum & 0xffff) + (sum >> 16);

	return ~sum & 0xFFFF;
}

/**
 *	sep_init_handler -
 *	@sep: pointer to struct sep_device
 *	@arg: parameters from user space application
 *
 *	Handles the request for SEP initialization
 *	Note that this will go away for Medfield once the SCU
 *	SEP initialization is complete
 *	Also note that the message to the SEP has components
 *	from user space as well as components written by the driver
 *	This is becuase the portions of the message that pertain to
 *	physical addresses must be set by the driver after the message
 *	leaves custody of the user space application for security
 *	reasons.
 */
static int sep_init_handler(struct sep_device *sep, unsigned long arg)
{
	u32 message_buff[14];
	u32 counter;
	int error = 0;
	u32 reg_val;
	dma_addr_t new_base_addr;
	unsigned long addr_hold;
	struct init_struct command_args;

	/* Make sure that we have not initialized already */
	reg_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);

	if (reg_val != 0x2) {
		error = SEP_ALREADY_INITIALIZED_ERR;
		dev_dbg(&sep->pdev->dev, "init; device already initialized\n");
		goto end_function;
	}

	/* Only root can initialize */
	if (!capable(CAP_SYS_ADMIN)) {
		error = -EACCES;
		goto end_function;
	}

	/* Copy in the parameters */
	error = copy_from_user(&command_args, (void __user *)arg,
		sizeof(struct init_struct));

	if (error) {
		error = -EFAULT;
		goto end_function;
	}

	/* Validate parameters */
	if (!command_args.message_addr || !command_args.sep_sram_addr ||
		command_args.message_size_in_words > 14) {
		error = -EINVAL;
		goto end_function;
	}

	/* Copy in the SEP init message */
	addr_hold = (unsigned long)command_args.message_addr;
	error = copy_from_user(message_buff,
		(void __user *)addr_hold,
		command_args.message_size_in_words*sizeof(u32));

	if (error) {
		error = -EFAULT;
		goto end_function;
	}

	/* Load resident, cache, and extapp firmware */
	error = sep_load_firmware(sep);

	if (error) {
		dev_warn(&sep->pdev->dev,
			"init; copy SEP init message failed %x\n", error);
		goto end_function;
	}

	/* Compute the base address */
	new_base_addr = sep->shared_bus;

	if (sep->resident_bus < new_base_addr)
		new_base_addr = sep->resident_bus;

	if (sep->cache_bus < new_base_addr)
		new_base_addr = sep->cache_bus;

	if (sep->dcache_bus < new_base_addr)
		new_base_addr = sep->dcache_bus;

	/* Put physical addresses in SEP message */
	message_buff[3] = (u32)new_base_addr;
	message_buff[4] = (u32)sep->shared_bus;
	message_buff[6] = (u32)sep->resident_bus;
	message_buff[7] = (u32)sep->cache_bus;
	message_buff[8] = (u32)sep->dcache_bus;

	message_buff[command_args.message_size_in_words - 1] = 0x0;
	message_buff[command_args.message_size_in_words - 1] =
		sep_check_sum_calc((u8 *)message_buff,
		command_args.message_size_in_words*sizeof(u32));

	/* Debug print of message */
	for (counter = 0; counter < command_args.message_size_in_words;
								counter++)
		dev_dbg(&sep->pdev->dev, "init; SEP message word %d is %x\n",
			counter, message_buff[counter]);

	/* Tell the SEP the sram address */
	sep_write_reg(sep, HW_SRAM_ADDR_REG_ADDR, command_args.sep_sram_addr);

	/* Push the message to the SEP */
	for (counter = 0; counter < command_args.message_size_in_words;
								counter++) {
		sep_write_reg(sep, HW_SRAM_DATA_REG_ADDR,
						message_buff[counter]);
		sep_wait_sram_write(sep);
	}

	/* Signal SEP that message is ready and to init */
	sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x1);

	/* Wait for acknowledge */

	do {
		reg_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
	} while (!(reg_val & 0xFFFFFFFD));

	if (reg_val == 0x1) {
		dev_warn(&sep->pdev->dev, "init; device int failed\n");
		error = sep_read_reg(sep, 0x8060);
		dev_warn(&sep->pdev->dev, "init; sw monitor is %x\n", error);
		error = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR0_REG_ADDR);
		dev_warn(&sep->pdev->dev, "init; error is %x\n", error);
		goto end_function;
	}
	/* Signal SEP to zero the GPR3 */
	sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x10);

	/* Wait for response */

	do {
		reg_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
	} while (reg_val != 0);

end_function:
	return error;
}

/**
 *	sep_end_transaction_handler - end transaction
 *	@sep: pointer to struct sep_device
 *
 *	This API handles the end transaction request
 */
static int sep_end_transaction_handler(struct sep_device *sep)
{
	/* Clear the data pool pointers Token */
	memset((void *)(sep->shared_addr +
		SEP_DRIVER_DATA_POOL_ALLOCATION_OFFSET_IN_BYTES),
		0, sep->num_of_data_allocations*2*sizeof(u32));

	/* Check that all the DMA resources were freed */
	sep_free_dma_table_data_handler(sep);

	clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags);

	/*
	 * We are now through with the transaction. Let's
	 * allow other processes who have the device open
	 * to perform transactions
	 */
	mutex_lock(&sep->sep_mutex);
	sep->pid_doing_transaction = 0;
	mutex_unlock(&sep->sep_mutex);
	/* Raise event for stuck contextes */
	wake_up(&sep->event);

	return 0;
}

/**
 *	sep_prepare_dcb_handler - prepare a control block
 *	@sep: pointer to struct sep_device
 *	@arg: pointer to user parameters
 *
 *	This function will retrieve the RAR buffer physical addresses, type
 *	& size corresponding to the RAR handles provided in the buffers vector.
 */
static int sep_prepare_dcb_handler(struct sep_device *sep, unsigned long arg)
{
	int error;
	/* Command arguments */
	struct build_dcb_struct command_args;

	/* Get the command arguments */
	if (copy_from_user(&command_args, (void __user *)arg,
					sizeof(struct build_dcb_struct))) {
		error = -EFAULT;
		goto end_function;
	}

	dev_dbg(&sep->pdev->dev, "prep dcb handler app_in_address is %08llx\n",
						command_args.app_in_address);
	dev_dbg(&sep->pdev->dev, "app_out_address is %08llx\n",
						command_args.app_out_address);
	dev_dbg(&sep->pdev->dev, "data_size is %x\n",
						command_args.data_in_size);
	dev_dbg(&sep->pdev->dev, "block_size is %x\n",
						command_args.block_size);
	dev_dbg(&sep->pdev->dev, "tail block_size is %x\n",
						command_args.tail_block_size);

	error = sep_prepare_input_output_dma_table_in_dcb(sep,
		(unsigned long)command_args.app_in_address,
		(unsigned long)command_args.app_out_address,
		command_args.data_in_size, command_args.block_size,
		command_args.tail_block_size, true, false);

end_function:
	return error;

}

/**
 *	sep_free_dcb_handler - free control block resources
 *	@sep: pointer to struct sep_device
 *
 *	This function frees the DCB resources and updates the needed
 *	user-space buffers.
 */
static int sep_free_dcb_handler(struct sep_device *sep)
{
	return sep_free_dma_tables_and_dcb(sep, false, false);
}

/**
 *	sep_rar_prepare_output_msg_handler - prepare an output message
 *	@sep: pointer to struct sep_device
 *	@arg: pointer to user parameters
 *
 *	This function will retrieve the RAR buffer physical addresses, type
 *	& size corresponding to the RAR handles provided in the buffers vector.
 */
static int sep_rar_prepare_output_msg_handler(struct sep_device *sep,
	unsigned long arg)
{
	int error = 0;
	/* Command args */
	struct rar_hndl_to_bus_struct command_args;
	struct RAR_buffer rar_buf;
	/* Bus address */
	dma_addr_t  rar_bus = 0;
	/* Holds the RAR address in the system memory offset */
	u32 *rar_addr;

	/* Copy the data */
	if (copy_from_user(&command_args, (void __user *)arg,
						sizeof(command_args))) {
		error = -EFAULT;
		goto end_function;
	}

	/* Call to translation function only if user handle is not NULL */
	if (command_args.rar_handle) {
		memset(&rar_buf, 0, sizeof(rar_buf));
		rar_buf.info.handle = (u32)command_args.rar_handle;

		if (rar_handle_to_bus(&rar_buf, 1) != 1) {
			error = -EFAULT;
			goto end_function;
		}
		rar_bus = rar_buf.bus_address;
	}
	dev_dbg(&sep->pdev->dev, "rar msg; rar_addr_bus = %x\n", (u32)rar_bus);

	/* Set value in the SYSTEM MEMORY offset */
	rar_addr = (u32 *)(sep->shared_addr +
		SEP_DRIVER_SYSTEM_RAR_MEMORY_OFFSET_IN_BYTES);

	/* Copy the physical address to the System Area for the SEP */
	rar_addr[0] = SEP_RAR_VAL_TOKEN;
	rar_addr[1] = rar_bus;

end_function:
	return error;
}

/**
 *	sep_realloc_ext_cache_handler - report location of extcache
 *	@sep: pointer to struct sep_device
 *	@arg: pointer to user parameters
 *
 *	This function tells the SEP where the extapp is located
 */
static int sep_realloc_ext_cache_handler(struct sep_device *sep,
	unsigned long arg)
{
	/* Holds the new ext cache address in the system memory offset */
	u32 *system_addr;

	/* Set value in the SYSTEM MEMORY offset */
	system_addr = (u32 *)(sep->shared_addr +
		SEP_DRIVER_SYSTEM_EXT_CACHE_ADDR_OFFSET_IN_BYTES);

	/* Copy the physical address to the System Area for the SEP */
	system_addr[0] = SEP_EXT_CACHE_ADDR_VAL_TOKEN;
	system_addr[1] = sep->extapp_bus;

	return 0;
}

/**
 *	sep_ioctl - ioctl api
 *	@filp: pointer to struct file
 *	@cmd: command
 *	@arg: pointer to argument structure
 *
 *	Implement the ioctl methods availble on the SEP device.
 */
static long sep_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	int error = 0;
	struct sep_device *sep = filp->private_data;

	/* Make sure we own this device */
	mutex_lock(&sep->sep_mutex);
	if ((current->pid != sep->pid_doing_transaction) &&
				(sep->pid_doing_transaction != 0)) {
		dev_dbg(&sep->pdev->dev, "ioctl pid is not owner\n");
		error = -EACCES;
		goto end_function;
	}

	mutex_unlock(&sep->sep_mutex);

	if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER)
		return -ENOTTY;

	/* Lock to prevent the daemon to interfere with operation */
	mutex_lock(&sep->ioctl_mutex);

	switch (cmd) {
	case SEP_IOCSENDSEPCOMMAND:
		/* Send command to SEP */
		error = sep_send_command_handler(sep);
		break;
	case SEP_IOCALLOCDATAPOLL:
		/* Allocate data pool */
		error = sep_allocate_data_pool_memory_handler(sep, arg);
		break;
	case SEP_IOCCREATESYMDMATABLE:
		/* Create DMA table for synhronic operation */
		error = sep_create_sync_dma_tables_handler(sep, arg);
		break;
	case SEP_IOCFREEDMATABLEDATA:
		/* Free the pages */
		error = sep_free_dma_table_data_handler(sep);
		break;
	case SEP_IOCSEPSTART:
		/* Start command to SEP */
		if (sep->pdev->revision == 0) /* Only for old chip */
			error = sep_start_handler(sep);
		else
			error = -EPERM; /* Not permitted on new chip */
		break;
	case SEP_IOCSEPINIT:
		/* Init command to SEP */
		if (sep->pdev->revision == 0) /* Only for old chip */
			error = sep_init_handler(sep, arg);
		else
			error = -EPERM; /* Not permitted on new chip */
		break;
	case SEP_IOCGETSTATICPOOLADDR:
		/* Inform the SEP the bus address of the static pool */
		error = sep_get_static_pool_addr_handler(sep);
		break;
	case SEP_IOCENDTRANSACTION:
		error = sep_end_transaction_handler(sep);
		break;
	case SEP_IOCREALLOCEXTCACHE:
		if (sep->pdev->revision == 0) /* Only for old chip */
			error = sep_realloc_ext_cache_handler(sep, arg);
		else
			error = -EPERM; /* Not permitted on new chip */
		break;
	case SEP_IOCRARPREPAREMESSAGE:
		error = sep_rar_prepare_output_msg_handler(sep, arg);
		break;
	case SEP_IOCPREPAREDCB:
		error = sep_prepare_dcb_handler(sep, arg);
		break;
	case SEP_IOCFREEDCB:
		error = sep_free_dcb_handler(sep);
		break;
	default:
		error = -ENOTTY;
		break;
	}

end_function:
	mutex_unlock(&sep->ioctl_mutex);
	return error;
}

/**
 *	sep_singleton_ioctl - ioctl api for singleton interface
 *	@filp: pointer to struct file
 *	@cmd: command
 *	@arg: pointer to argument structure
 *
 *	Implement the additional ioctls for the singleton device
 */
static long sep_singleton_ioctl(struct file  *filp, u32 cmd, unsigned long arg)
{
	long error = 0;
	struct sep_device *sep = filp->private_data;

	/* Check that the command is for the SEP device */
	if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER)
		return -ENOTTY;

	/* Make sure we own this device */
	mutex_lock(&sep->sep_mutex);
	if ((current->pid != sep->pid_doing_transaction) &&
				(sep->pid_doing_transaction != 0)) {
		dev_dbg(&sep->pdev->dev, "singleton ioctl pid is not owner\n");
		mutex_unlock(&sep->sep_mutex);
		return -EACCES;
	}

	mutex_unlock(&sep->sep_mutex);

	switch (cmd) {
	case SEP_IOCTLSETCALLERID:
		mutex_lock(&sep->ioctl_mutex);
		error = sep_set_caller_id_handler(sep, arg);
		mutex_unlock(&sep->ioctl_mutex);
		break;
	default:
		error = sep_ioctl(filp, cmd, arg);
		break;
	}
	return error;
}

/**
 *	sep_request_daemon_ioctl - ioctl for daemon
 *	@filp: pointer to struct file
 *	@cmd: command
 *	@arg: pointer to argument structure
 *
 *	Called by the request daemon to perform ioctls on the daemon device
 */
static long sep_request_daemon_ioctl(struct file *filp, u32 cmd,
	unsigned long arg)
{

	long error;
	struct sep_device *sep = filp->private_data;

	/* Check that the command is for SEP device */
	if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER)
		return -ENOTTY;

	/* Only one process can access ioctl at any given time */
	mutex_lock(&sep->ioctl_mutex);

	switch (cmd) {
	case SEP_IOCSENDSEPRPLYCOMMAND:
		/* Send reply command to SEP */
		error = sep_req_daemon_send_reply_command_handler(sep);
		break;
	case SEP_IOCENDTRANSACTION:
		/*
		 * End req daemon transaction, do nothing
		 * will be removed upon update in middleware
		 * API library
		 */
		error = 0;
		break;
	default:
		error = -ENOTTY;
	}
	mutex_unlock(&sep->ioctl_mutex);
	return error;
}

/**
 *	sep_inthandler - interrupt handler
 *	@irq: interrupt
 *	@dev_id: device id
 */
static irqreturn_t sep_inthandler(int irq, void *dev_id)
{
	irqreturn_t int_error = IRQ_HANDLED;
	unsigned long lck_flags;
	u32 reg_val, reg_val2 = 0;
	struct sep_device *sep = dev_id;

	/* Read the IRR register to check if this is SEP interrupt */
	reg_val = sep_read_reg(sep, HW_HOST_IRR_REG_ADDR);

	if (reg_val & (0x1 << 13)) {
		/* Lock and update the counter of reply messages */
		spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
		sep->reply_ct++;
		spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);

		dev_dbg(&sep->pdev->dev, "sep int: send_ct %lx reply_ct %lx\n",
					sep->send_ct, sep->reply_ct);

		/* Is this printf or daemon request? */
		reg_val2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
		dev_dbg(&sep->pdev->dev,
			"SEP Interrupt - reg2 is %08x\n", reg_val2);

		if ((reg_val2 >> 30) & 0x1) {
			dev_dbg(&sep->pdev->dev, "int: printf request\n");
			wake_up(&sep->event_request_daemon);
		} else if (reg_val2 >> 31) {
			dev_dbg(&sep->pdev->dev, "int: daemon request\n");
			wake_up(&sep->event_request_daemon);
		} else {
			dev_dbg(&sep->pdev->dev, "int: SEP reply\n");
			wake_up(&sep->event);
		}
	} else {
		dev_dbg(&sep->pdev->dev, "int: not SEP interrupt\n");
		int_error = IRQ_NONE;
	}
	if (int_error == IRQ_HANDLED)
		sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, reg_val);

	return int_error;
}

/**
 *	sep_reconfig_shared_area - reconfigure shared area
 *	@sep: pointer to struct sep_device
 *
 *	Reconfig the shared area between HOST and SEP - needed in case
 *	the DX_CC_Init function was called before OS loading.
 */
static int sep_reconfig_shared_area(struct sep_device *sep)
{
	int ret_val;

	/* use to limit waiting for SEP */
	unsigned long end_time;

	/* Send the new SHARED MESSAGE AREA to the SEP */
	dev_dbg(&sep->pdev->dev, "reconfig shared; sending %08llx to sep\n",
				(unsigned long long)sep->shared_bus);

	sep_write_reg(sep, HW_HOST_HOST_SEP_GPR1_REG_ADDR, sep->shared_bus);

	/* Poll for SEP response */
	ret_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR);

	end_time = jiffies + (WAIT_TIME * HZ);

	while ((time_before(jiffies, end_time)) && (ret_val != 0xffffffff) &&
		(ret_val != sep->shared_bus))
		ret_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR);

	/* Check the return value (register) */
	if (ret_val != sep->shared_bus) {
		dev_warn(&sep->pdev->dev, "could not reconfig shared area\n");
		dev_warn(&sep->pdev->dev, "result was %x\n", ret_val);
		ret_val = -ENOMEM;
	} else
		ret_val = 0;

	dev_dbg(&sep->pdev->dev, "reconfig shared area end\n");
	return ret_val;
}

/* File operation for singleton SEP operations */
static const struct file_operations singleton_file_operations = {
	.owner = THIS_MODULE,
	.unlocked_ioctl = sep_singleton_ioctl,
	.poll = sep_poll,
	.open = sep_singleton_open,
	.release = sep_singleton_release,
	.mmap = sep_mmap,
};

/* File operation for daemon operations */
static const struct file_operations daemon_file_operations = {
	.owner = THIS_MODULE,
	.unlocked_ioctl = sep_request_daemon_ioctl,
	.poll = sep_request_daemon_poll,
	.open = sep_request_daemon_open,
	.release = sep_request_daemon_release,
	.mmap = sep_request_daemon_mmap,
};

/* The files operations structure of the driver */
static const struct file_operations sep_file_operations = {
	.owner = THIS_MODULE,
	.unlocked_ioctl = sep_ioctl,
	.poll = sep_poll,
	.open = sep_open,
	.release = sep_release,
	.mmap = sep_mmap,
};

/**
 *	sep_register_driver_with_fs - register misc devices
 *	@sep: pointer to struct sep_device
 *
 *	This function registers the driver with the file system
 */
static int sep_register_driver_with_fs(struct sep_device *sep)
{
	int ret_val;

	sep->miscdev_sep.minor = MISC_DYNAMIC_MINOR;
	sep->miscdev_sep.name = SEP_DEV_NAME;
	sep->miscdev_sep.fops = &sep_file_operations;

	sep->miscdev_singleton.minor = MISC_DYNAMIC_MINOR;
	sep->miscdev_singleton.name = SEP_DEV_SINGLETON;
	sep->miscdev_singleton.fops = &singleton_file_operations;

	sep->miscdev_daemon.minor = MISC_DYNAMIC_MINOR;
	sep->miscdev_daemon.name = SEP_DEV_DAEMON;
	sep->miscdev_daemon.fops = &daemon_file_operations;

	ret_val = misc_register(&sep->miscdev_sep);
	if (ret_val) {
		dev_warn(&sep->pdev->dev, "misc reg fails for SEP %x\n",
			ret_val);
		return ret_val;
	}

	ret_val = misc_register(&sep->miscdev_singleton);
	if (ret_val) {
		dev_warn(&sep->pdev->dev, "misc reg fails for sing %x\n",
			ret_val);
		misc_deregister(&sep->miscdev_sep);
		return ret_val;
	}

	ret_val = misc_register(&sep->miscdev_daemon);
	if (ret_val) {
		dev_warn(&sep->pdev->dev, "misc reg fails for dmn %x\n",
			ret_val);
		misc_deregister(&sep->miscdev_sep);
		misc_deregister(&sep->miscdev_singleton);

		return ret_val;
	}
	return ret_val;
}


/**
 *	sep_probe - probe a matching PCI device
 *	@pdev: pci_device
 *	@end: pci_device_id
 *
 *	Attempt to set up and configure a SEP device that has been
 *	discovered by the PCI layer.
 */
static int __devinit sep_probe(struct pci_dev *pdev,
	const struct pci_device_id *ent)
{
	int error = 0;
	struct sep_device *sep;

	if (sep_dev != NULL) {
		dev_warn(&pdev->dev, "only one SEP supported.\n");
		return -EBUSY;
	}

	/* Enable the device */
	error = pci_enable_device(pdev);
	if (error) {
		dev_warn(&pdev->dev, "error enabling pci device\n");
		goto end_function;
	}

	/* Allocate the sep_device structure for this device */
	sep_dev = kzalloc(sizeof(struct sep_device), GFP_ATOMIC);
	if (sep_dev == NULL) {
		dev_warn(&pdev->dev,
			"can't kmalloc the sep_device structure\n");
		error = -ENOMEM;
		goto end_function_disable_device;
	}

	/*
	 * We're going to use another variable for actually
	 * working with the device; this way, if we have
	 * multiple devices in the future, it would be easier
	 * to make appropriate changes
	 */
	sep = sep_dev;

	sep->pdev = pci_dev_get(pdev);

	init_waitqueue_head(&sep->event);
	init_waitqueue_head(&sep->event_request_daemon);
	spin_lock_init(&sep->snd_rply_lck);
	mutex_init(&sep->sep_mutex);
	mutex_init(&sep->ioctl_mutex);

	dev_dbg(&sep->pdev->dev, "sep probe: PCI obtained, device being prepared\n");
	dev_dbg(&sep->pdev->dev, "revision is %d\n", sep->pdev->revision);

	/* Set up our register area */
	sep->reg_physical_addr = pci_resource_start(sep->pdev, 0);
	if (!sep->reg_physical_addr) {
		dev_warn(&sep->pdev->dev, "Error getting register start\n");
		error = -ENODEV;
		goto end_function_free_sep_dev;
	}

	sep->reg_physical_end = pci_resource_end(sep->pdev, 0);
	if (!sep->reg_physical_end) {
		dev_warn(&sep->pdev->dev, "Error getting register end\n");
		error = -ENODEV;
		goto end_function_free_sep_dev;
	}

	sep->reg_addr = ioremap_nocache(sep->reg_physical_addr,
		(size_t)(sep->reg_physical_end - sep->reg_physical_addr + 1));
	if (!sep->reg_addr) {
		dev_warn(&sep->pdev->dev, "Error getting register virtual\n");
		error = -ENODEV;
		goto end_function_free_sep_dev;
	}

	dev_dbg(&sep->pdev->dev,
		"Register area start %llx end %llx virtual %p\n",
		(unsigned long long)sep->reg_physical_addr,
		(unsigned long long)sep->reg_physical_end,
		sep->reg_addr);

	/* Allocate the shared area */
	sep->shared_size = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES +
		SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES +
		SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES +
		SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES +
		SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES;

	if (sep_map_and_alloc_shared_area(sep)) {
		error = -ENOMEM;
		/* Allocation failed */
		goto end_function_error;
	}

	sep->rar_size = FAKE_RAR_SIZE;
	sep->rar_addr = dma_alloc_coherent(&sep->pdev->dev,
		sep->rar_size, &sep->rar_bus, GFP_KERNEL);
	if (sep->rar_addr == NULL) {
		dev_warn(&sep->pdev->dev, "can't allocate mfld rar\n");
		error = -ENOMEM;
		goto end_function_deallocate_sep_shared_area;
	}

	dev_dbg(&sep->pdev->dev, "rar start is %p, phy is %llx,"
		" size is %zx\n", sep->rar_addr,
		(unsigned long long)sep->rar_bus,
		sep->rar_size);

	/* Clear ICR register */
	sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF);

	/* Set the IMR register - open only GPR 2 */
	sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13)));

	/* Read send/receive counters from SEP */
	sep->reply_ct = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
	sep->reply_ct &= 0x3FFFFFFF;
	sep->send_ct = sep->reply_ct;

	/* Get the interrupt line */
	error = request_irq(pdev->irq, sep_inthandler, IRQF_SHARED,
		"sep_driver", sep);

	if (error)
		goto end_function_dealloc_rar;

	/* The new chip requires a shared area reconfigure */
	if (sep->pdev->revision == 4) { /* Only for new chip */
		error = sep_reconfig_shared_area(sep);
		if (error)
			goto end_function_free_irq;
	}
	/* Finally magic up the device nodes */
	/* Register driver with the fs */
	error = sep_register_driver_with_fs(sep);
	if (error == 0)
		/* Success */
		return 0;

end_function_free_irq:
	free_irq(pdev->irq, sep);

end_function_dealloc_rar:
	if (sep->rar_addr)
		dma_free_coherent(&sep->pdev->dev, sep->rar_size,
			sep->rar_addr, sep->rar_bus);
	goto end_function;

end_function_deallocate_sep_shared_area:
	/* De-allocate shared area */
	sep_unmap_and_free_shared_area(sep);

end_function_error:
	iounmap(sep->reg_addr);

end_function_free_sep_dev:
	pci_dev_put(sep_dev->pdev);
	kfree(sep_dev);
	sep_dev = NULL;

end_function_disable_device:
	pci_disable_device(pdev);

end_function:
	return error;
}

static void sep_remove(struct pci_dev *pdev)
{
	struct sep_device *sep = sep_dev;

	/* Unregister from fs */
	misc_deregister(&sep->miscdev_sep);
	misc_deregister(&sep->miscdev_singleton);
	misc_deregister(&sep->miscdev_daemon);

	/* Free the irq */
	free_irq(sep->pdev->irq, sep);

	/* Free the shared area  */
	sep_unmap_and_free_shared_area(sep_dev);
	iounmap((void *) sep_dev->reg_addr);
}

static DEFINE_PCI_DEVICE_TABLE(sep_pci_id_tbl) = {
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, MFLD_PCI_DEVICE_ID)},
	{0}
};

MODULE_DEVICE_TABLE(pci, sep_pci_id_tbl);

/* Field for registering driver to PCI device */
static struct pci_driver sep_pci_driver = {
	.name = "sep_sec_driver",
	.id_table = sep_pci_id_tbl,
	.probe = sep_probe,
	.remove = sep_remove
};


/**
 *	sep_init - init function
 *
 *	Module load time. Register the PCI device driver.
 */
static int __init sep_init(void)
{
	return pci_register_driver(&sep_pci_driver);
}


/**
 *	sep_exit - called to unload driver
 *
 *	Drop the misc devices then remove and unmap the various resources
 *	that are not released by the driver remove method.
 */
static void __exit sep_exit(void)
{
	pci_unregister_driver(&sep_pci_driver);
}


module_init(sep_init);
module_exit(sep_exit);

MODULE_LICENSE("GPL");

Privacy Policy