aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/bitops.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2020-06-11 18:55:43 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2020-06-11 18:55:43 -0700
commitb791d1bdf9212d944d749a5c7ff6febdba241771 (patch)
treec207137a4d4f6b5dae3b1ecdf0ffaa357852fa7c /arch/x86/include/asm/bitops.h
parent9716e57a0195dae356ae1425df121988abd27131 (diff)
parent1f44328ea24c9de368a3cfe5cc0e110b949afb2e (diff)
Merge tag 'locking-kcsan-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull the Kernel Concurrency Sanitizer from Thomas Gleixner: "The Kernel Concurrency Sanitizer (KCSAN) is a dynamic race detector, which relies on compile-time instrumentation, and uses a watchpoint-based sampling approach to detect races. The feature was under development for quite some time and has already found legitimate bugs. Unfortunately it comes with a limitation, which was only understood late in the development cycle: It requires an up to date CLANG-11 compiler CLANG-11 is not yet released (scheduled for June), but it's the only compiler today which handles the kernel requirements and especially the annotations of functions to exclude them from KCSAN instrumentation correctly. These annotations really need to work so that low level entry code and especially int3 text poke handling can be completely isolated. A detailed discussion of the requirements and compiler issues can be found here: https://lore.kernel.org/lkml/CANpmjNMTsY_8241bS7=XAfqvZHFLrVEkv_uM4aDUWE_kh3Rvbw@mail.gmail.com/ We came to the conclusion that trying to work around compiler limitations and bugs again would end up in a major trainwreck, so requiring a working compiler seemed to be the best choice. For Continous Integration purposes the compiler restriction is manageable and that's where most xxSAN reports come from. For a change this limitation might make GCC people actually look at their bugs. Some issues with CSAN in GCC are 7 years old and one has been 'fixed' 3 years ago with a half baken solution which 'solved' the reported issue but not the underlying problem. The KCSAN developers also ponder to use a GCC plugin to become independent, but that's not something which will show up in a few days. Blocking KCSAN until wide spread compiler support is available is not a really good alternative because the continuous growth of lockless optimizations in the kernel demands proper tooling support" * tag 'locking-kcsan-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits) compiler_types.h, kasan: Use __SANITIZE_ADDRESS__ instead of CONFIG_KASAN to decide inlining compiler.h: Move function attributes to compiler_types.h compiler.h: Avoid nested statement expression in data_race() compiler.h: Remove data_race() and unnecessary checks from {READ,WRITE}_ONCE() kcsan: Update Documentation to change supported compilers kcsan: Remove 'noinline' from __no_kcsan_or_inline kcsan: Pass option tsan-instrument-read-before-write to Clang kcsan: Support distinguishing volatile accesses kcsan: Restrict supported compilers kcsan: Avoid inserting __tsan_func_entry/exit if possible ubsan, kcsan: Don't combine sanitizer with kcov on clang objtool, kcsan: Add kcsan_disable_current() and kcsan_enable_current_nowarn() kcsan: Add __kcsan_{enable,disable}_current() variants checkpatch: Warn about data_race() without comment kcsan: Use GFP_ATOMIC under spin lock Improve KCSAN documentation a bit kcsan: Make reporting aware of KCSAN tests kcsan: Fix function matching in report kcsan: Change data_race() to no longer require marking racing accesses kcsan: Move kcsan_{disable,enable}_current() to kcsan-checks.h ...
Diffstat (limited to 'arch/x86/include/asm/bitops.h')
-rw-r--r--arch/x86/include/asm/bitops.h6
1 files changed, 5 insertions, 1 deletions
diff --git a/arch/x86/include/asm/bitops.h b/arch/x86/include/asm/bitops.h
index 0367efdc5b7a..35460fef39b8 100644
--- a/arch/x86/include/asm/bitops.h
+++ b/arch/x86/include/asm/bitops.h
@@ -201,8 +201,12 @@ arch_test_and_change_bit(long nr, volatile unsigned long *addr)
return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
}
-static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
+static __no_kcsan_or_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
{
+ /*
+ * Because this is a plain access, we need to disable KCSAN here to
+ * avoid double instrumentation via instrumented bitops.
+ */
return ((1UL << (nr & (BITS_PER_LONG-1))) &
(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
}

Privacy Policy