aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/bitops.h
blob: d153d570bb04755d9fb106e3375db55dd3114fd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_BITOPS_H
#define _ASM_X86_BITOPS_H

/*
 * Copyright 1992, Linus Torvalds.
 *
 * Note: inlines with more than a single statement should be marked
 * __always_inline to avoid problems with older gcc's inlining heuristics.
 */

#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

#include <linux/compiler.h>
#include <asm/alternative.h>
#include <asm/rmwcc.h>
#include <asm/barrier.h>

#if BITS_PER_LONG == 32
# define _BITOPS_LONG_SHIFT 5
#elif BITS_PER_LONG == 64
# define _BITOPS_LONG_SHIFT 6
#else
# error "Unexpected BITS_PER_LONG"
#endif

#define BIT_64(n)			(U64_C(1) << (n))

/*
 * These have to be done with inline assembly: that way the bit-setting
 * is guaranteed to be atomic. All bit operations return 0 if the bit
 * was cleared before the operation and != 0 if it was not.
 *
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */

#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))

#define ADDR				BITOP_ADDR(addr)

/*
 * We do the locked ops that don't return the old value as
 * a mask operation on a byte.
 */
#define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
#define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
#define CONST_MASK(nr)			(1 << ((nr) & 7))

/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 *
 * Note: there are no guarantees that this function will not be reordered
 * on non x86 architectures, so if you are writing portable code,
 * make sure not to rely on its reordering guarantees.
 *
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static __always_inline void
set_bit(long nr, volatile unsigned long *addr)
{
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "orb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
			: "iq" ((u8)CONST_MASK(nr))
			: "memory");
	} else {
		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
	}
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
{
	asm volatile(__ASM_SIZE(bts) " %1,%0" : ADDR : "Ir" (nr) : "memory");
}

/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
 * in order to ensure changes are visible on other processors.
 */
static __always_inline void
clear_bit(long nr, volatile unsigned long *addr)
{
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "andb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
			: "iq" ((u8)~CONST_MASK(nr)));
	} else {
		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
			: BITOP_ADDR(addr)
			: "Ir" (nr));
	}
}

/*
 * clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and implies release semantics before the memory
 * operation. It can be used for an unlock.
 */
static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
{
	barrier();
	clear_bit(nr, addr);
}

static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
{
	asm volatile(__ASM_SIZE(btr) " %1,%0" : ADDR : "Ir" (nr));
}

static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
{
	bool negative;
	asm volatile(LOCK_PREFIX "andb %2,%1"
		CC_SET(s)
		: CC_OUT(s) (negative), ADDR
		: "ir" ((char) ~(1 << nr)) : "memory");
	return negative;
}

// Let everybody know we have it
#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte

/*
 * __clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * __clear_bit() is non-atomic and implies release semantics before the memory
 * operation. It can be used for an unlock if no other CPUs can concurrently
 * modify other bits in the word.
 *
 * No memory barrier is required here, because x86 cannot reorder stores past
 * older loads. Same principle as spin_unlock.
 */
static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
{
	barrier();
	__clear_bit(nr, addr);
}

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
{
	asm volatile(__ASM_SIZE(btc) " %1,%0" : ADDR : "Ir" (nr));
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static __always_inline void change_bit(long nr, volatile unsigned long *addr)
{
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "xorb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
			: "iq" ((u8)CONST_MASK(nr)));
	} else {
		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
			: BITOP_ADDR(addr)
			: "Ir" (nr));
	}
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
{
	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
}

/**
 * test_and_set_bit_lock - Set a bit and return its old value for lock
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This is the same as test_and_set_bit on x86.
 */
static __always_inline bool
test_and_set_bit_lock(long nr, volatile unsigned long *addr)
{
	return test_and_set_bit(nr, addr);
}

/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
{
	bool oldbit;

	asm(__ASM_SIZE(bts) " %2,%1"
	    CC_SET(c)
	    : CC_OUT(c) (oldbit), ADDR
	    : "Ir" (nr));
	return oldbit;
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
{
	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 *
 * Note: the operation is performed atomically with respect to
 * the local CPU, but not other CPUs. Portable code should not
 * rely on this behaviour.
 * KVM relies on this behaviour on x86 for modifying memory that is also
 * accessed from a hypervisor on the same CPU if running in a VM: don't change
 * this without also updating arch/x86/kernel/kvm.c
 */
static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
{
	bool oldbit;

	asm volatile(__ASM_SIZE(btr) " %2,%1"
		     CC_SET(c)
		     : CC_OUT(c) (oldbit), ADDR
		     : "Ir" (nr));
	return oldbit;
}

/* WARNING: non atomic and it can be reordered! */
static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
{
	bool oldbit;

	asm volatile(__ASM_SIZE(btc) " %2,%1"
		     CC_SET(c)
		     : CC_OUT(c) (oldbit), ADDR
		     : "Ir" (nr) : "memory");

	return oldbit;
}

/**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
{
	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
}

static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
{
	return ((1UL << (nr & (BITS_PER_LONG-1))) &
		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
}

static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
{
	bool oldbit;

	asm volatile(__ASM_SIZE(bt) " %2,%1"
		     CC_SET(c)
		     : CC_OUT(c) (oldbit)
		     : "m" (*(unsigned long *)addr), "Ir" (nr));

	return oldbit;
}

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
static bool test_bit(int nr, const volatile unsigned long *addr);
#endif

#define test_bit(nr, addr)			\
	(__builtin_constant_p((nr))		\
	 ? constant_test_bit((nr), (addr))	\
	 : variable_test_bit((nr), (addr)))

/**
 * __ffs - find first set bit in word
 * @word: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
static __always_inline unsigned long __ffs(unsigned long word)
{
	asm("rep; bsf %1,%0"
		: "=r" (word)
		: "rm" (word));
	return word;
}

/**
 * ffz - find first zero bit in word
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
static __always_inline unsigned long ffz(unsigned long word)
{
	asm("rep; bsf %1,%0"
		: "=r" (word)
		: "r" (~word));
	return word;
}

/*
 * __fls: find last set bit in word
 * @word: The word to search
 *
 * Undefined if no set bit exists, so code should check against 0 first.
 */
static __always_inline unsigned long __fls(unsigned long word)
{
	asm("bsr %1,%0"
	    : "=r" (word)
	    : "rm" (word));
	return word;
}

#undef ADDR

#ifdef __KERNEL__
/**
 * ffs - find first set bit in word
 * @x: the word to search
 *
 * This is defined the same way as the libc and compiler builtin ffs
 * routines, therefore differs in spirit from the other bitops.
 *
 * ffs(value) returns 0 if value is 0 or the position of the first
 * set bit if value is nonzero. The first (least significant) bit
 * is at position 1.
 */
static __always_inline int ffs(int x)
{
	int r;

#ifdef CONFIG_X86_64
	/*
	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before, except that the
	 * top 32 bits will be cleared.
	 *
	 * We cannot do this on 32 bits because at the very least some
	 * 486 CPUs did not behave this way.
	 */
	asm("bsfl %1,%0"
	    : "=r" (r)
	    : "rm" (x), "0" (-1));
#elif defined(CONFIG_X86_CMOV)
	asm("bsfl %1,%0\n\t"
	    "cmovzl %2,%0"
	    : "=&r" (r) : "rm" (x), "r" (-1));
#else
	asm("bsfl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n"
	    "1:" : "=r" (r) : "rm" (x));
#endif
	return r + 1;
}

/**
 * fls - find last set bit in word
 * @x: the word to search
 *
 * This is defined in a similar way as the libc and compiler builtin
 * ffs, but returns the position of the most significant set bit.
 *
 * fls(value) returns 0 if value is 0 or the position of the last
 * set bit if value is nonzero. The last (most significant) bit is
 * at position 32.
 */
static __always_inline int fls(unsigned int x)
{
	int r;

#ifdef CONFIG_X86_64
	/*
	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before, except that the
	 * top 32 bits will be cleared.
	 *
	 * We cannot do this on 32 bits because at the very least some
	 * 486 CPUs did not behave this way.
	 */
	asm("bsrl %1,%0"
	    : "=r" (r)
	    : "rm" (x), "0" (-1));
#elif defined(CONFIG_X86_CMOV)
	asm("bsrl %1,%0\n\t"
	    "cmovzl %2,%0"
	    : "=&r" (r) : "rm" (x), "rm" (-1));
#else
	asm("bsrl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n"
	    "1:" : "=r" (r) : "rm" (x));
#endif
	return r + 1;
}

/**
 * fls64 - find last set bit in a 64-bit word
 * @x: the word to search
 *
 * This is defined in a similar way as the libc and compiler builtin
 * ffsll, but returns the position of the most significant set bit.
 *
 * fls64(value) returns 0 if value is 0 or the position of the last
 * set bit if value is nonzero. The last (most significant) bit is
 * at position 64.
 */
#ifdef CONFIG_X86_64
static __always_inline int fls64(__u64 x)
{
	int bitpos = -1;
	/*
	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before.
	 */
	asm("bsrq %1,%q0"
	    : "+r" (bitpos)
	    : "rm" (x));
	return bitpos + 1;
}
#else
#include <asm-generic/bitops/fls64.h>
#endif

#include <asm-generic/bitops/find.h>

#include <asm-generic/bitops/sched.h>

#include <asm/arch_hweight.h>

#include <asm-generic/bitops/const_hweight.h>

#include <asm-generic/bitops/le.h>

#include <asm-generic/bitops/ext2-atomic-setbit.h>

#endif /* __KERNEL__ */
#endif /* _ASM_X86_BITOPS_H */

Privacy Policy